【题目】已知∠AOB=50°,∠BOC=30°,则∠AOC= .
参考答案:
【答案】20°或80°
【解析】
解:当OC在∠AOB内部,
因为∠AOB=50°,∠BOC=30°,
所以∠AOC为20°;
当OC在∠AOB外部,
因为∠AOB=50°,∠BOC=30°,
所以∠AOC为80°;
故∠AOC为20°或80°.
分两种情况讨论:OC在∠AOB内部和OC在∠AOB外部。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线经过A(﹣1,0),B(3,0),C(0,
)三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶每千克成本50元,经研究发现销量y(kg)随销售单价x(元/ kg)的变化而变化,具体变化规律如下表所示:

设该绿茶的月销售利润为w(元)(销售利润=单价×销售量-成本)
(1)请根据上表,求出y与x之间的函数关系式(不必写出自变量x的取值范围);
(2)求w与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,w的值最大?
(3)若在第一个月里,按使w获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于80元,要想在全部收回装修投资的基础上使第二个月的利润至少达到1700元,那么第二个月时里应该确定销售单价在什么范围内?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数
的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣2,0)及点B.(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足
≤kx+b的x的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.

(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为 ,周长为 .
(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为 ,周长为 .
2(3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若△ABC的三边长分别是a、b、c,且a、b、c满足(a+b)2-2ab=c2,则△ABC为________三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.
(1)指定路灯的位置(用点P表示);
(2)在图中画出表示大树高的线段(用线段MG表示);
(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.

相关试题