【题目】甲、乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B地所剩的路程是乙到A地所剩路程的2倍,试求甲、乙两人的速度.
参考答案:
【答案】甲的速度为每小时4千米,乙的速度为每小5千米;或甲的速度为每小时
4千米,乙的速度为每小
千米.
【解析】试题分析:设甲的速度为xkm/h,乙的速度为ykm/h,那么可以分两种情况:
①当甲和乙还没有相遇相距3千米时,根据经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍可以列出方程组
解决问题;
②当甲和乙相遇了相距3千米时,根据经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍可以列出方程组
解决问题.
试题解析:设甲的速度为每小时x千米,乙的速度为每小时y千米,
①当甲、乙两人相遇前相距3千米时,得:
,解得:
,
②当甲、乙两人经过3小时相遇后又相距3千米时,得:
,解得:
,
答:甲的速度为每小时4千米,乙的速度为每小5千米;或甲的速度为每小时
4千米,乙的速度为每小
千米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米.乙列车每小时行90千米,几小时两列火车相遇?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,直线AB∥CD
(1)如图1,点E在直线BD的左侧,猜想∠ABE、∠CDE、∠BED的数量关系,并证明你的结论;
(2)如图2,点E在直线BD的左侧,BF、DF分别平分∠ABE、∠CDE,猜想∠BFD和∠BED的数量关系,并证明你的结论;
(3)如图3,点E在直线BD的右侧,BF、DF分别平分∠ABE、∠CDE;那么第(2)题中∠BFD和∠BED的数量关系的猜想是否仍成立?如果成立,请证明;如果不成立,请写出你的猜想,并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在小学,我们知道正方形具有性质“四条边都相等,四个内角都是直角”,请适当利用上述知识,解答下列问题:
已知:如图,在正方形ABCD中,AB=4,点G是射线AB上的一个动点,以DG为边向右作正方形DGEF,作EH⊥AB于点H.
(1)填空:∠AGD+∠EGH= °;
(2)若点G在点B的右边.
①求证:△DAG≌△GHE;
②试探索:EH﹣BG的值是否为定值,若是,请求出定值;若不是,请说明理由.
(3)连接EB,在G点的整个运动(点G与点A重合除外)过程中,求∠EBH的度数;

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点P的坐标为(0,﹣5),以P为圆心的圆与x轴相切,⊙P的弦AB(B点在A点右侧)垂直于y轴,且AB=8,反比例函数
(k≠0)经过点B,则k=______. -
科目: 来源: 题型:
查看答案和解析>>【题目】随着奥运会成功召开,福娃系列商品也随之热销.一天小林在商场看到一件奥运吉祥物的纪念品,标价为每件33元,他的身边只带有2元和5元两种面值的人民币各若干张,他买了一件这种商品. 若无需找零钱,则小林付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】张老师每天从甲地到乙地锻炼身体,甲、乙两地相距14千米,已知他步行的平均速度为80米/分,跑步的平均速度为200米/分,若他要在不超过10分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式( )
A.80x+200(10-x)≤1.4B.80x+200(10-x)≤1400
C.200x+80(10-x)≥1.4D.200x+80(10-x)≥1400
相关试题