【题目】定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.
(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.
(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.
①若点P点Q同时出发,且当点P与点Q重合时,求t的值.
②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.
![]()
参考答案:
【答案】(1)DP的长为5cm或10cm;(2)①5秒;②3秒、
秒或10秒.
【解析】
(1)直接由题目讨论DP为哪一个三等分点即可.
(2) ①由题意列出t+2t=15,解得即可.
②分别讨论P,Q重合之前与之后的三等分点即可.
(1)当DP为短的部分时,DP:PE=1:2,可得DP=5
当DP为长的部分时,DP:PE=2:1,可得DP=10
(2)①当点P与点Q重合时,t+2t=15,即t=5.
②当点P是线段AQ的三等分点时,AQ=15-2t
或
或
或![]()
解得t=3或t=
或t=10.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.
求证:(1)FC=AD;
(2)AB=BC+AD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.

(1)求证:BG=CF.
(2)请你判断BE+CF与EF的大小关系,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有这样一个问题:探究函数y=
的图象与性质. 下面是小文的探究过程,请补充完整:
(1)函数y=
的自变量x的取值范围是;
(2)如表是y与x的几组对应值.x
…
﹣3
﹣2
﹣1
0
2
3
4
5
…
y
…
﹣

﹣

﹣

0
2



…
如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.

①观察图中各点的位置发现:点A1和B1 , A2和B2 , A3和B3 , A4和B4均关于某点中心对称,则该点的坐标为;
②小文分析函数y=
的表达式发现:当x<1时,该函数的最大值为0,则该函数图象在直线x=1左侧的最高点的坐标为;
(3)小文补充了该函数图象上两个点(
,﹣
),(
,
), ①在上图中描出这两个点,并画出该函数的图象;
②写出该函数的一条性质: . -
科目: 来源: 题型:
查看答案和解析>>【题目】用白铁皮做罐头盒,每张铁皮可做盒身25个,或做盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?
①设用x张制盒身,可得方程2×25x=40(36﹣x);
②设用x张制盒身,可得方程25x=2×40(36﹣x);
③设用x张制盒身,y张制盒底,可得方程组
;④设用x张制盒身,y张制盒底,可得方程组
;其中正确的是( )A. ①④ B. ②③ C. ②④ D. ①③
-
科目: 来源: 题型:
查看答案和解析>>【题目】平面直角坐标系xOy中,抛物线y=mx2﹣2m2x+2交y轴于A点,交直线x=4于B点.
(1)抛物线的对称轴为x=(用含m的代数式表示);
(2)若AB∥x轴,求抛物线的表达式;
(3)记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(xp , yp),yp≤2,求m的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在ABCD中,点B关于AD的对称点为B′,连接AB′,CB′,CB′交AD于F点.
(1)如图1,∠ABC=90°,求证:F为CB′的中点;
(2)小宇通过观察、实验、提出猜想:如图2,在点B绕点A旋转的过程中,点F始终为CB′的中点.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:过点B′作B′G∥CD交AD于G点,只需证三角形全等;
想法2:连接BB′交AD于H点,只需证H为BB′的中点;
想法3:连接BB′,BF,只需证∠B′BC=90°.
…
请你参考上面的想法,证明F为CB′的中点.(一种方法即可)
(3)如图3,当∠ABC=135°时,AB′,CD的延长线相交于点E,求
的值.
相关试题