【题目】某市为创建生态文明城市,对公路旁的绿化带进行全面改造.现有甲、乙两个工程队,有三种施工方案:
方案一:甲队单独完成这项工程,刚好能如期完成;
方案二:乙队单独完成这项工程,要比预定工期多用3天;
方案三:先由甲、乙两队一起合作2天,剩下的工程由乙队单独完成,刚好如期完成.
(1)求工程预定工期的天数
(2)若甲队每施工一天需工程款2万元,乙队每施工一天需工程款1.3万元.为节省工程款,同时又如期完工,请你选择一种方案,并说明理由
参考答案:
【答案】(1)6天;(2)选方案三,理由见解析.
【解析】
(1)设工期是x天,利用工作量=工作时间×工作效率,根据甲队单独完成这项工程,刚好能如期完成;乙队单独完成这项工程,要比预定工期多用3天;先由甲、乙两队一起合作2天,剩下的工程由乙队单独完成,刚好如期完成即可列方程,可得答案;(2)方案二耽误工期,不符合要求,分别计算方案一和方案三的费用,比较即可得答案.
(1)设工期是x天,
∴
=1,
解得x=6
经检验,x=6是原方程的解.
(2)方案一:6×2=12(万元);
方案二:不能如期完成;
方案三:甲乙合作2天,完成工程量为:2×(
)=
,
∴剩下工程乙还需(1-
)÷
=4(天),
∴费用为2×(2+1.3)+4×1.3=11.8(万元).
∴选方案三
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:

(1)此次共调查了多少人?
(2)求文学社团在扇形统计图中所占圆心角的度数;
(3)请将条形统计图补充完整;
(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.

(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,问小鸟落在草坪上的概率是多少?
(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少(用树形图或列表法求解)?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某县特色早餐种类繁多,色香味美,著名的种类有“干挑面”、“锅贴”、“青团子” “粢米饭”等.一数学兴趣小组在全校范围内随机抽取了一些同学进行“我最喜爱的特色早餐”调查活动,每位同学选择一种自己最喜欢的早餐种类,将调查结果绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:

(1)请将条形统计图补充完整.
(2)在扇形统计图中,表示“粢米饭”对应的扇形的圆心角是多少度?
(3)该校共有1200名学生,请你估计该校学生中最喜爱“青团子”的学生有多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在平面直角坐标系xOy中,正比例函数y=
x的图象经过点A,点A的纵坐标为4,反比例函数y=
的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:
(1)这个反比例函数的解析式;
(2)直线AB的表达式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】关于
的方程
的解为正整数,且关于
的不等式组
有解且最多有
个整数解,则满足条件的所有整数
的值为_______. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.

相关试题