【题目】某农科所在相同条件下做某作物种子发芽率的试验,结果如下表所示:
种子个数 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
发芽种子个数 | 94 | 187 | 282 | 338 | 435 | 530 | 621 | 781 | 814 | 901 |
发芽种子频率 | 0.940 | 0.935 | 0.940 | 0.845 | 0.870 | 0.883 | 0.891 | 0.898 | 0.904 | 0.901 |
根据频率的稳定性,估计该作物种子发芽的概率为__________(结果保留小数点后一位).
参考答案:
【答案】0.9
【解析】
选一个表格中发芽种子频率比较按近的数,如0.904、0.901等都可以.
解:根据题意,由频率估计概率,则
估计该作物种子发芽的概率为:0.9;
故答案为:0.9;
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列四对图形中,是相似图形的是( )
A.任意两个三角形B.任意两个等腰三角形
C.任意两个直角三角形D.任意两个等边三角形
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的盒子里,装有四个分别标有数字
,
,
,
的小球,它们的形状、大小、质地等完全相同.小强先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;
(2)求小强、小华各取一次小球所确定的点(x,y)落在一次函数
的图象上的概率;(3)求小强、小华各取一次小球所确定的数x、y满足
的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,二次函数y1=(x﹣2)(x﹣4)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴l与x轴交于点C,它的顶点为点D.
(1)写出点D的坐标 .
(2)点P在对称轴l上,位于点C上方,且CP=2CD,以P为顶点的二次函数y2=ax2+bx+c(a≠0)的图象过点A.
①试说明二次函数y2=ax2+bx+c(a≠0)的图象过点B;
②点R在二次函数y1=(x﹣2)(x﹣4)的图象上,到x轴的距离为d,当点R的坐标为 时,二次函数y2=ax2+bx+c(a≠0)的图象上有且只有三个点到x轴的距离等于2d;
③如图2,已知0<m<2,过点M(0,m)作x轴的平行线,分别交二次函数y1=(x﹣2)(x﹣4)y2=ax2+bx+c(a≠0)的图象于点E、F、G、H(点E、G在对称轴l左侧),过点H作x轴的垂线,垂足为点N,交二次函数y1=(x﹣2)(x﹣4)的图象于点Q,若△GHN∽△EHQ,求实数m的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若一个多边形的内角和是它的外角和的4倍,则这个多边形的边数是________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为加强学生课间锻炼,某校决定开设羽毛球、跳绳、踢毽子三种运动项目,为了解学生最喜欢哪一种项目,随机抽取了n名学生进行调查(每名同学选择一种体育项目),并将调查结果绘制成如图两个统计图.

请结合上述信息解答下列问题:
(1)求n的值;
(2)请把条形统计图补充完整;
(3)已知该校有1200人,请你根据统计图中的资料估计全校最喜欢踢毽子的人数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知某小区的两幢10层住宅楼间的距离为AC="30" m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3 m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α .

(1) 用含α的式子表示h(不必指出α的取值范围);
(2) 当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光 ?
相关试题