【题目】A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运40千克,A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等.设B型机器人每小时搬运化工原料x千克,根据题意可列方程为( )
A.
= ![]()
B.
= ![]()
C.
= ![]()
D.
= ![]()
参考答案:
【答案】A
【解析】解:设B型机器人每小时搬运化工原料x千克,则A型机器人每小时搬运化工原料(x+40)千克,
∵A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等,
∴
=
.
故选A.
根据A、B两种机器人每小时搬运化工原料间的关系可得出A型机器人每小时搬运化工原料(x+40)千克,再根据A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等即可列出关于x的分式方程,由此即可得出结论.本题考查了由实际问题抽象出分式方程,解题的关键是根据数量关系列出关于x的分式方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程是关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为E,F.

(1)求证:△FOE≌△DOC;
(2)求sin∠OEF的值;
(3)若直线EF与线段AD,BC分别相交于点G,H,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】设函数y=kx2+(2k+1)x+1(k为实数)
(1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中,用描点法画出这两个特殊函数的图象;
(2)根据所画图象,猜想出:对任意实数k,函数的图象都具有的特征,并给予证明;
(3)对任意负实数k,当x<m时,y随着x的增大而增大,试求出m的一个值. -
科目: 来源: 题型:
查看答案和解析>>【题目】图形既关于点O中心对称,又关于直线AC,BD对称,AC=10,BD=6,已知点E,M是线段AB上的动点(不与端点重合),点O到EF,MN的距离分别为h1 , h2 , △OEF与△OGH组成的图形称为蝶形.

(1)求蝶形面积S的最大值;
(2)当以EH为直径的圆与以MQ为直径的圆重合时,求h1与h2满足的关系式,并求h1的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】下面图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形一共有1个平行四边形,第②个图形一共有5个平行四边形,第③个图形一共有11个平行四边形,……,则第⑥个图形中平行四边形的个数为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是
的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2
时,则阴影部分的面积为( ) 
A.2π﹣4
B.4π﹣8
C.2π﹣8
D.4π﹣4
相关试题