【题目】在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称为“理想点”.例如点(﹣2,﹣4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.
(1)若点M(2,a)是“理想点”,且在正比例函数y=kx(k为常数,k≠0)图象上,求这个正比例函数的表达式.
(2)函数y=3mx﹣1(m为常数,且m≠0)的图象上存在“理想点”吗?若存在,请用含m的代数式表示出“理想点”的坐标;若不存在,请说明理由.
参考答案:
【答案】
(1)
解:∵点M(2,a)是正比例函数y=kx(k为常数,k≠0)图象上的“理想点”,
∴a=4,
∵点M(2,4)在正比例函数y=kx(k为常数,k≠0)图象上,
∴4=2k,
解得k=2
∴正比例函数的解析式为y=2x
(2)
解:假设函数y=3mx﹣1(m为常数,m≠0)的图象上存在“理想点”(x,2x),
则有3mx﹣1=2x,
整理得:(3m﹣2)x=1,
当3m﹣2≠0,即m≠
时,解得:x=
,
当3m﹣2=0,即m=
时,x无解,
综上所述,当m≠
时,函数图象上存在“理想点”,为(
,
);
当m=
时,函数图象上不存在“理想点”
【解析】(1)根据“理想点”,确定a的值,即可确定M点的坐标,代入正比例函数解析式,即可解答;(2)假设函数y=3mx﹣1(m为常数,m≠0)的图象上存在“理想点”(x,2x),则有3mx﹣1=2x,整理得:(3m﹣2)x=1,分两种情况讨论:当3m﹣2≠0,即m≠
时,解得:x=
,当3m﹣2=0,即m=
时,x无解,即可解答.
【考点精析】解答此题的关键在于理解正比例函数的图象和性质的相关知识,掌握正比函数图直线,经过一定过原点.K正一三负二四,变化趋势记心间.K正左低右边高,同大同小向爬山.K负左高右边低,一大另小下山峦.
-
科目: 来源: 题型:
查看答案和解析>>【题目】16 的平方根是__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:等腰△ABC中,AB=AC,点D是直线AC上一动点,点E在BD的延长线上,且AB=AE,∠CAE的角平分线所在的直线交BE于F,连结CF.

(1)如图1,当点D在线段AC上时,求证:∠ABE=∠ACF;
(2)如图2,当∠ABC=60°且点D在线段AC上时,求证:AF+EF=FB.(提示:将线段FB拆分成两部分)
(3)①如图3,当∠ABC=45°其点D在线段AC上时,线段AF、EF、FB仍有(2)中的结论吗?若有,加以证明;若没有,则有怎样的数量关系,直接写出答案即可.
②如图4,当∠ABC=45°且点D在CA的延长线时,请你按题意将图形补充完成.并直接写出线段AF、EF、FB的数量关系. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行了有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会. 在一个纸盒里装有2个红求和2个白球,除颜色外其他都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表)
甲 超 市
球
两红
一红一白
两白
礼金券
5
10
5
乙 超 市
球
两红
一红一白
两白
礼金券
10
5
10
(1)用树状图或列表法表示得到一次摸奖机会时中礼金券的所有情况;
(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,△ABC中的顶点A、C分别在平面直角坐标系的x轴、y轴上,且∠ACB=90°,AC=2,BC=1,当点A从原点出发朝x轴的正方向运动,点C也随之在y轴上运动,当点C运动到原点时点A停止运动,连结OB.

(1)点A在原点时,求OB的长;
(2)当OA=OC时,求OB的长;
(3)在整个运动过程中,OB是否存在最大值?若存在,请你求出这个最大值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列是用火柴棒拼出的一列图形.

仔细观察,找出规律,解答下列各题:
(1)第5个图中共有根火柴;
(2)第n个图形中共有根火柴(用含n的式子表示);
(3)请计算第2013个图形中共有多少根火柴? -
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=-(x-1)2-2的顶点坐标是( )
A. (-1,2)B. (-1,-2)C. (1,-2)D. (1,2)
相关试题