【题目】如图1,在长方形ABCD中,AB=12cm,BC=10cm,点P从A出发,沿A→B→C→D的路线运动,到D停止;点Q从D点出发,沿D→C→B→A路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒lcm、2cm,a秒时P、Q两点同时改变速度,分别变为每秒2cm、
cm(P、Q两点速度改变后一直保持此速度,直到停止),如图2是△APD的面积s(cm2)和运动时间x(秒)的图象.
(1)求出a值;
(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x(秒)的关系式;
(3)求P、Q两点都在BC边上,x为何值时P、Q两点相距3cm?
![]()
参考答案:
【答案】(1)6;(2)10或
;
【解析】
(1)根据图象变化确定a秒时,P点位置,利用面积求a;
(2)P、Q两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒;
(3)以(2)为基础可知,两个点相距3cm分为相遇前相距或相遇后相距,因此由(2)可列方程.
(1)由图象可知,当点P在BC上运动时,△APD的面积保持不变,则a秒时,点P在AB上.
,
∴AP=6,
则a=6;
(2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x﹣6)=2x﹣6,
∵Q点路程总长为34cm,第6秒时已经走12cm,
故点Q还剩的路程为y2=34﹣12﹣
;
(3)当P、Q两点相遇前相距3cm时,
﹣(2x﹣6)=3,解得x=10,
当P、Q两点相遇后相距3cm时,
(2x﹣6)﹣(
)=3,解得x=
,
∴当x=10或
时,P、Q两点相距3cm
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=12,AC=BC=10,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为D,点C的对应点为E,连接BD,BE.

(1)如图,当α=60°时,延长BE交AD于点F.
①求证:△ABD是等边三角形;
②求证:BF⊥AD,AF=DF;
③请直接写出BE的长.
(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,AB=5cm,E为对角线BD上一动点,连接AE、CE,过E点作EF⊥AE,交直线BC于点F,E点从B点出发,沿BD方向以每秒1cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为ycm2,E点的运动时间为x秒.

(1)点E在整个运动过程中,试说明总有:CE=EF;
(2)求y与x之间关系的表达式,并写出x的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,在一个盒子旦有红球和白球共10个,它们除颜色外都相同,将它们充分摇匀后,从中随机抽出一个,记下颜色后放回.在摸球活动中得到如下数据:
摸球总次数
50
100
150
200
250
300
350
400
450
500
摸到红球的频率
17
32
44
64
78
a
103
122
136
148
摸到红球的频率
0.34
0.32
0.293
0.32
0.312
0.32
0.294
b
0.302
c
(1)请将表格中的数据补齐a= ;b= ;c= ;
(2)根据上表,完成折线统计图;

当摸球次数很大时,摸到红球的频率将会接近 (精确到0.1)
(3)请你估计,当摸球次数很大时,摸到红球的频率将会接近 (精确到0.1)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形纸片
,对角线为
,沿过点
的直线折叠,使点
落在对角线
上的点
处,折痕
,若
,则
的长是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD=∠BCE=30°,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.
(1)线段AE与DB的数量关系为 ;请直接写出∠APD= ;
(2)将△BCE绕点C旋转到如图2所示的位置,其他条件不变,探究线段AE与DB的数量关系,并说明理由;求出此时∠APD的度数;
(3)在(2)的条件下求证:∠APC=∠BPC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
中,
是
的中点,
,
,
交
于
,
,BC=8,则
__________.
相关试题