【题目】如图,矩形纸片
,对角线为
,沿过点
的直线折叠,使点
落在对角线
上的点
处,折痕
,若
,则
的长是( )
![]()
A.
B.
C.
D.![]()
参考答案:
【答案】B
【解析】
由折叠即可得∠GDA=∠GDB,AD=ED,然后过点G作GE⊥BD于E,即可得AG=EG,设AG=x,则GE=x,BE=BD-DE=5-3=2,BG=AB-AG=4-x,在Rt△BEG中利用勾股定理,即可求得AG的长.
根据题意可得:∠GDA=∠GDB,AD=ED,
∵四边形ABCD是矩形,
∴∠A=90°,AD=BC=3,
∴AG=EG,ED=3,
∵AB=4,BC=3,∠A=90°,
∴BD=5,
设AG=x,则GE=x,BE=BD-DE=5-3=2,BG=AB-AG=4-x,
在Rt△BEG中,EG2+BE2=BG2,
即:x2+4=(4-x)2,
解得:x=
,
∴AG=
.
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,AB=5cm,E为对角线BD上一动点,连接AE、CE,过E点作EF⊥AE,交直线BC于点F,E点从B点出发,沿BD方向以每秒1cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为ycm2,E点的运动时间为x秒.

(1)点E在整个运动过程中,试说明总有:CE=EF;
(2)求y与x之间关系的表达式,并写出x的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,在一个盒子旦有红球和白球共10个,它们除颜色外都相同,将它们充分摇匀后,从中随机抽出一个,记下颜色后放回.在摸球活动中得到如下数据:
摸球总次数
50
100
150
200
250
300
350
400
450
500
摸到红球的频率
17
32
44
64
78
a
103
122
136
148
摸到红球的频率
0.34
0.32
0.293
0.32
0.312
0.32
0.294
b
0.302
c
(1)请将表格中的数据补齐a= ;b= ;c= ;
(2)根据上表,完成折线统计图;

当摸球次数很大时,摸到红球的频率将会接近 (精确到0.1)
(3)请你估计,当摸球次数很大时,摸到红球的频率将会接近 (精确到0.1)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在长方形ABCD中,AB=12cm,BC=10cm,点P从A出发,沿A→B→C→D的路线运动,到D停止;点Q从D点出发,沿D→C→B→A路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒lcm、2cm,a秒时P、Q两点同时改变速度,分别变为每秒2cm、
cm(P、Q两点速度改变后一直保持此速度,直到停止),如图2是△APD的面积s(cm2)和运动时间x(秒)的图象.(1)求出a值;
(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x(秒)的关系式;
(3)求P、Q两点都在BC边上,x为何值时P、Q两点相距3cm?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD=∠BCE=30°,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.
(1)线段AE与DB的数量关系为 ;请直接写出∠APD= ;
(2)将△BCE绕点C旋转到如图2所示的位置,其他条件不变,探究线段AE与DB的数量关系,并说明理由;求出此时∠APD的度数;
(3)在(2)的条件下求证:∠APC=∠BPC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
中,
是
的中点,
,
,
交
于
,
,BC=8,则
__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票。王伟和李丽分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被三等分)确定指定日门票的归属,在两个转盘都停止转动后,若指针所指的两个数字之和为 偶数,则王伟获得指定日门票;若指针所指的两个数字之和为奇数,则李丽获得指定日门票;若指针指向分隔线,则重新转动。你认为这个方法公平吗?请画树状图或列表,并说明理由.

相关试题