【题目】如图,在一条东西方向笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头A的北偏东60°方向、在码头B的北偏西45°方向,AC=4千米.那么码头A、B之间的距离等于_____千米.(结果保留根号)
![]()
参考答案:
【答案】(2
+2)
【解析】
作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD、AD的长,然后在Rt△BCD中求得BD的长,即可得到码头A、B之间的距离.
如图,作CD⊥AB于点D.
![]()
∵在Rt△ACD中,∠CAD=90°﹣60°=30°,
∴CD=ACsin∠CAD=4×
=2(km),AD=ACcos30°=4×
=2
(km),
∵Rt△BCD中,∠CDB=90°,∠CBD=45°,
∴BD=CD=2(km),
∴AB=AD+BD=2
+2(km),
故答案是:(2
+2).
-
科目: 来源: 题型:
查看答案和解析>>【题目】在50包型号为L的衬衫的包裹中混进了型号为M的衬衫,每包20件衬衫,每包中混入的M号衬衫数如表:
M号衬衫数
0
1
4
5
7
9
10
11
包数
7
3
10
15
5
4
3
3
根据以上数据,选择正确选项( ).
A.M号衬衫一共有47件
B.从中随机取一包,包中L号衬衫数不低于9是随机事件
C.从中随机取一包,包中L号衬衫数不超过4的概率为0.26
D.将50包衬衫混合在一起,从中随机拿出一件衬衫,恰好是M号的概率为0.252
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,DE⊥AC于点E,BF⊥AC于点F,∠1+∠2=180°,求证:∠AGF=∠ABC.
试将下面的证明过程补充完整(填空):
证明:∵DE⊥AC,BF⊥AC(已知)
∴∠AFB=∠AED=90°(_______)
∴BF∥DE(同位角相等,两直线平行),
∴∠2+∠3=180°(两直线平行,同旁内角互补),
又∵∠1+∠2=180°(已知),
∴∠1=______,(同角的补角相等)
∴GF∥_____(内错角相等,两直线平行),
∴∠AGF=∠ABC.(______)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=_____°.

-
科目: 来源: 题型:
查看答案和解析>>【题目】“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别
成绩x分
频数
人数
第1组

6
第2组

8
第3组

14
第4组

a
第5组

10
请结合图表完成下列各题:
求表中a的值;
频数分布直方图补充完整;
若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线过A(﹣1,5),P(2,a),B(3,﹣3).
(1)求直线AB的解析式和a的值;
(2)求△AOP的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,过B点作BM⊥AC于点E,交CD于点M,过D点作DN⊥AC于点F,交AB于点N.
(1)求证:四边形BMDN是平行四边形;
(2)已知AF=12,EM=5,求AN的长.

相关试题