【题目】如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F. 已知AD=2cm,BC=5cm.
(1)求证:FC=AD;
(2)求AB的长.
![]()
参考答案:
【答案】(1)证明见解析 ;(2)AB=7cm.
【解析】试题分析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.
(2)根据线段垂直平分线的性质判断出AB=BF即可.
试题解析:(1)∵AD∥BC
∴∠ADC=∠ECF ,
∵E是CD的中点,
∴DE=EC ,
∵在△ADE与△FCE中,
,
∴△ADE≌△FCE(ASA) ,
∴FC=AD ;
(2)∵△ADE≌△FCE,
∴AE=EF,AD=CF ,
∵BE⊥AE ,
∴BE是线段AF的垂直平分线,
∴AB=BF=BC+CF,
∵AD=CF ,
∴AB=BC+AD=5+2=7(cm).
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点A(1,0),B(3,2),将线段AB平移后得到线段CD,若点A的对应点C(2,﹣1),则点B的对应点D的坐标为( )
A.(4,1)B.(5,3)C.(5,1)D.(2,0)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,把三角形ABC向上平移3个单位长度,再向右平移2个单位长度,得到三角形A1B1C1.
(1)在图中画出三角形A1B1C1;
(2)写出点A1,B1的坐标;
(3)在y轴上是否存在一点P,使得三角形BCP与三角形ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现2个正面向上一个反面向上,则小亮赢;若出现一个正面向上2个反面向上,则小文赢.下面说法正确的是( )
A.三人赢的概率都相等
B.小文赢的概率最小
C.小亮赢的概率最小
D.小强赢的概率最小 -
科目: 来源: 题型:
查看答案和解析>>【题目】数学课上,李老师出示了如下框中的题目.
在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图.试确定线段AE与DB的大小关系,并说明理由.

小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:
AE DB(填“>”,“<”或“=”).

图1 图2
(2)特例启发,解答题目
解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).
理由如下:如图2,过点E作EF∥BC,交AC于点F.
(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).
-
科目: 来源: 题型:
查看答案和解析>>【题目】推理填空:
如图所示,已知∠1 = ∠2,∠B = ∠C,可推得AB∥CD,

理由如下:
∵∠1 = ∠2(已知),且∠1 = ∠4(_____________________),
∴∠2 = ∠4(等量代换).
∴CE∥BF(__________________________).
∴∠_____= ∠3(________________________)
又∵∠B = ∠C(已知),
∴∠3= ∠B(等量代换),
∴AB∥CD(_____________________________).
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c的图像如图所示,则反比例函数
与一次函数y=bx+c在同一坐标系中的大致图像是( )
A.
B.
C.
D.
相关试题