【题目】如图,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.
![]()
参考答案:
【答案】见解析
【解析】试题分析:
如图,考虑到CE是△ABC的中线,我们延长CE到F,使EF=CE,这样CF=2CE,结合已知条件可证△AEC≌△BEF,并可进一步证得△CFB≌△CDB,得到CF=CD,从而可得结论CD=2CE.
试题解析:
如图,延长CE到点F,使EF=CE,则CF=2CE,
![]()
∵CE是△ABC的中线,
∴ AE=BE,
在△ACE和△BFE中, ![]()
∴ △ ACE≌ △ BFE(AAS),
∴ AC=BF,∠A=∠ABF,
又∵∠ACB=∠ABC,CB是△ADC的中线,
∴ AC=AB=BD=BF,∠DBC=∠A+∠ACB=∠ABF+∠ABC,即∠DBC=∠FBC,
在△DBC和△FBC中,
,
∴△DBC≌△FBC(SAS),
∴DC=CF=2CE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若|﹣x|=2.4,则x= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程ax2﹣2x﹣1=0有两个不相等的实数根,则a的取值范围是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,点D,E在AB上,且AF垂直平分CD,BG垂直平分CE.(1)求∠ECD的度数;(2)若∠ACB为α,则∠ECD的度数能否用含α的式子来表示.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;其中正确的是_________

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,抛物线
与x轴相交于A、B两点(点A在点B的右侧),已知C(0,
).连接AC.(1)求直线AC的解析式.
(2)点P是x轴下方的抛物线上一动点,过点P作PE⊥x轴交直线AC于点E,交x轴于点F,过点P作PG⊥AE于点G,线段PG交x轴于点H.设l=EP﹣
FH,求l的最大值.(3)如图2,在(2)的条件下,点M是x轴上一动点,连接EM、PM,将△EPM沿直线EM折叠为△EP1M,连接AP,AP1.当△APP1是等腰三角形时,试求出点M的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠ABC=2∠ACB,延长AB至点D,使BD=BC,点E是直线BC上一点,点F是直线AC上一点,连接DE.连接EF,且∠DEF=∠DBC.
(1)如图1,若∠D=∠EFC=15°,AB=
,求AC的长.(2)如图2,当∠BAC=45°,点E为线段BC的延长线上,点F在线段AC的延长线上时,求证:CF=
BE.(3)如图3,当∠BAC=90°,点E为线段CB的延长线上,点F在线段CA的延长线上时,猜想线段CF与线段BE的数量关系,并证明猜想的结论.

相关试题