【题目】如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点C的对应点C′.(利用网格点和三角板画图)
![]()
(1)画出平移后的△A′B′C′.
(2)画出AB边上的中线线CD;
(3)在整个平移过程中,线段BC扫过的面积是___.
参考答案:
【答案】(1)如图所示;(2)如图所示;(3)26.
【解析】
(1)根据C′位置结合网格特点和平移的性质,可得A′,B′的位置,然后顺次连接即可;
(2)找到AB边上的中点D,连接CD即可;
(3)用平行四边形BCC′B′所在矩形的面积减去周围四个直角三角形的面积即可.
解:(1)如图所示,△A′B′C′即为所求;
(2)如图所示,CD即为所求;
![]()
(3)线段BC扫过的面积=8×6-
×2×5-
×3×4-
×2×5-
×3×4=26.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(14分)如图,已知抛物线
(
)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.
(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,O为坐标原点,点A的坐标为(a,a),点B的坐标(b,c),且a、b、c满足
.(1)若a没有平方根,判断点A在第几象限并说明理由.
(2)连AB、OA、OB,若△OAB的面积大于5而小于8,求a的取值范围;
(3)若两个动点M(2m,3m-5),N(n-1,-2n-3),请你探索是否存在以两个动点M、N为端点的线段MN∥AB,且MN=AB.若存在,求出M、N两点的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在正方形
外取一点
,连接
、
、
.过点
作
的垂线交
于点
.若
,
.下列结论:①
;②点
到直线
的距离为
;③
;④
;⑤
;其中正确结论的序号是( )
A.①③④B.①②⑤C.③④⑤D.①③⑤
-
科目: 来源: 题型:
查看答案和解析>>【题目】一次数学兴趣小组活动中,同学们做了一个找朋友的游戏:有六个同学A、B、C、D、E、F分别藏在六张大纸牌的后面,如图,A、B、C、D、E、F所持的纸牌的前面分别写有六个算式:66;63+63;(63)3;(2×62)×(3×63);(22×32)3;(64)3÷62.游戏规定:所持算式的值相等的两个人是朋友.如果现在由同学A来找他的朋友,他可以找谁呢?说说你的看法.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为宣传6月6日世界海洋日,某校八年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:

(1)本次调查一共随机抽取了个参赛学生的成绩;
(2)表1中a= ;
(3)所抽取的参赛学生的成绩的中位数落在的“组别”是 ;
(4)请你估计,该校九年级竞赛成绩达到90分以上(含90分)的学生约有多少人.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE、DF、EF,则添加下列哪一个条件后,仍无法判断△FCE与△EDF全等( )

A. ∠A=∠DFE B. BF=CF C. DF∥AC D. ∠C=∠EDF
相关试题