【题目】如图,
在平面直角坐标系
中.
![]()
(1)请直接写出点
、
两点的坐标:
:___________;
:___________;
(2)若把
向上平移3个单位,再向右平移2个单位得
,请在上图中画出
,并写出点
的坐标___________;
(3)求
的面积是多少.
参考答案:
【答案】(1)A(-1,-1),B(4,2);(2)见解析;(3)7.
【解析】
(1)根据平面直角坐标系写出各点的坐标即可;
(2)根据网格结构找出点A、B、C平移后的对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;
(3)利用△ABC所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.
解:(1)点
的坐标为:
;
点的坐标为:
;
(2)如图所示:
即为所求,
![]()
点
的坐标为:
;
(3)
的面积是:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两名队员参加射击训练(各射击10次),成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下表:
平均成绩/环
中位数/环
众数/环
方差/环2
甲
a
7
7
1.2
乙
7
b
8
c
(1)求出表格中a,b,c的值;
(2)分别运用表中的统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c的顶点为B(1,﹣3),与x轴的一个交点A在(2,0)和(3,0)之间,下列结论中:①bc>0;②2a+b=0;③a﹣b+c>0;④a﹣c=3,正确的有( )个

A. 4 B. 3 C. 2 D. 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中,是假命题的是( )
A. 在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形
B. 在△ABC中,若a2=(b+c) (b-c),则△ABC是直角三角形
C. 在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形
D. 在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读并解决问题:归纳
人们通过长期观察发现,如果早晨天空中有棉絮状的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学里,我们也常用这样的方法探求规律,例如:三角形有3个顶点,如果在它的内部再画n个点,并以(n+3)个点为顶点,把三角形剪成若干个小三角形,那么最多可以剪得多少个这样的三角形? .为了解决这个问题,我们可以从n=1、n=2、nr=3 等具体的、简单的情形入手,探索最多可以剪得的三角形个数的变化规律.

(1)完成表格信息:_______、_________;
(2)通过观察、比较,可以发现:三角形内的点每增加1个,最多可以剪得的三角形增加_________个.于是,我们可以猜想:当三角形内的点的个数为n时,最多可以剪得____________个三角形.像这样通过对现象的观察、分析,从特殊到-般地探索这类现象的规律、提出猜想的思想方法称为归纳.在日常生活中,人们互相交谈时,常常有人在列举了一些现象后,说“这(即列举的现象)说明....其实这就是运用了归纳的方法.用归纳的方法得出的结论不一定正确,是否正确需要加以证实.
(3)请你借助表格尝试用归纳的方法探索: 1+3+5+7+......+(2n-1)的和是多少?并加以证实.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程
(米)与甲出发的时间
(分钟)之间的关系如图所示,下列说法错误的是( )
A.甲的速度是70米/分B.乙的速度是60米/分
C.甲距离景点2100米D.乙距离景点420米
-
科目: 来源: 题型:
查看答案和解析>>【题目】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图所示的方式进行拼接.
(1)若把4张这样的餐桌拼接起来,四周可坐 人;
(2)若把n张这样的餐桌拼接起来,四周可坐 人;
(3)若把9张这样的餐桌拼接起来,四周可坐 人;
(4)若用餐的人数有50人,则这样的餐桌需要多少张?

相关试题