【题目】如图,四边形ABCD内接于⊙O,AB=AC,BD⊥AC,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.
(1)求证:∠BAC=2∠DAC;
(2)若AF=10,BC=4
,求tan∠BAD的值.
![]()
参考答案:
【答案】(1)见解析;(2) tan∠BAD=
.
【解析】
(1)根据等腰三角形的性质得出∠ABC=∠ACB,根据圆心角、弧、弦的关系得到
=
,即可得到∠ABC=∠ADB,根据三角形内角和定理得到∠ABC=
(180°∠BAC)=90°
∠BAC,∠ADB=90°∠CAD,从而得到
∠BAC=∠CAD,即可证得结论;
(2)易证得BC=CF=4
,即可证得AC垂直平分BF,证得AB=AF=10,根据勾股定理求得AE、CE、BE,根据相交弦定理求得DE,即可求得BD,然后根据三角形面积公式求得DH,进而求得AH,解直角三角形求得tan∠BAD的值.
解:(1)∵AB=AC,
∴
=
,∠ABC=∠ACB,
∴∠ABC=∠ADB,∠ABC=
(180°∠BAC)=90°
∠BAC,
∵BD⊥AC,
∴∠ADB=90°∠DAC,
∴
∠BAC=∠DAC,
∴∠BAC=2∠DAC;
(2)∵DF=DC,
∴∠BFC=
∠BDC=
∠BAC=∠FBC,
∴CB=CF,
又BD⊥AC,
∴AC是线段BF的中垂线,AB= AF=10, AC=10.
又BC=4
,
设AE=x, CE=10-x,
AB2-AE2=BC2-CE2, 100-x2=80-(10-x)2, x=6
∴AE=6,BE=8,CE=4,
∴DE=
=
=3,
∴BD/span>=BE+DE=3+8=11,
作DH⊥AB,垂足为H,
∵
ABDH=
BDAE,
∴DH=
,
∴BH=
,
∴AH=ABBH=10
,
∴tan∠BAD=
=
=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3-m,n)、D(
, y2)、E(2,y3),则y1、y2、y3的大小关系是( ).A. y1< y2< y3B. y1 < y3< y2C. y3< y2< y1D. y2< y3< y1
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=4﹣x与双曲线y
交于A,B两点,过B作直线BC⊥y轴,垂足为C,则以OA为直径的圆与直线BC的交点坐标是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:

(1)本次调查共抽取了 名学生,两幅统计图中的m= ,n= .
(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?
(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店准备购进
两种商品,
种商品毎件的进价比
种商品每件的进价多20元,用3000元购进
种商品和用1800元购进
种商品的数量相同.商店将
种商品每件的售价定为80元,
种商品每件的售价定为45元.(1)
种商品每件的进价和
种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进
两种商品共40件,其中
种商品的数量不低于
种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件
种商品售价优惠
(
)元,
种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在△ABC中,AB=AC=20,tanB=
,点D为BC边上的动点(D不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;
(2)当DE∥AB时(如图2),求AE的长;
(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知抛物线
过点
.
(1)求抛物线的解析式及其顶点C的坐标;
(2)设点D是x轴上一点,当
时,求点D的坐标;(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段PA交BE于点M,交y轴于点N,
和
的面积分别为
,求
的最大值.
相关试题