【题目】如图,在平面直角坐标系xOy中,直线y=
x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣
且经过A、C两点,与x轴的另一交点为点B.
(1)①直接写出点B的坐标;②求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.
(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.
![]()
参考答案:
【答案】(1)①(1,0)②y=-
x2-
x+2(2)(﹣2,3)(3)存在M1(0,2),M2(﹣3,2),M3(2,﹣3),M4(5,﹣18)
【解析】
试题分析:(1)①先求的直线y=
x+2与x轴交点的坐标,然后利用抛物线的对称性可求得点B的坐标;②设抛物线的解析式为y=y=a(x+4)(x﹣1),然后将点C的坐标代入即可求得a的值;
(2)设点P、Q的横坐标为m,分别求得点P、Q的纵坐标,从而可得到线段PQ=-
m2﹣2m,然后利用三角形的面积公式可求得S△PAC=
×PQ×4,然后利用配方法可求得△PAC的面积的最大值以及此时m的值,从而可求得点P的坐标;
(3)首先可证明△ABC∽△ACO∽△CBO,然后分以下几种情况分类讨论即可:①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC; ④当点M在第四象限时,解题时,需要注意相似三角形的对应关系.
试题解析:(1)①y=
x+2
当x=0时,y=2,当y=0时,x=﹣4,
∴C(0,2),A(﹣4,0),
由抛物线的对称性可知:点A与点B关于x=﹣
对称,
∴点B的坐标为(1,0).
②∵抛物线y=ax2+bx+c过A(﹣4,0),B(1,0),
∴可设抛物线解析式为y=a(x+4)(x﹣1),
又∵抛物线过点C(0,2),
∴2=﹣4a
∴a=-![]()
∴y=-
x2-
x+2.
(2)设P(m,-
m2-
m+2).
过点P作PQ⊥x轴交AC于点Q,
![]()
∴Q(m,
m+2),
∴PQ=-
m2-
m+2﹣(
m+2)
=-
m2﹣2m,
∵S△PAC=
×PQ×4,
=2PQ=﹣m2﹣4m=﹣(m+2)2+4,
∴当m=﹣2时,△PAC的面积有最大值是4,
此时P(﹣2,3).
(3)在Rt△AOC中,tan∠CAO=
在Rt△BOC中,tan∠BCO=
,
∴∠CAO=∠BCO,
∵∠BCO+∠OBC=90°,
∴∠CAO+∠OBC=90°,
∴∠ACB=90°,
∴△ABC∽△ACO∽△CBO,
如下图:
![]()
①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;
③ 根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC;
④ 当点M在第四象限时,设M(n,-
n2-
n+2),则N(n,0)
∴MN=
n2+
n﹣2,AN=n+4
当
时,MN=
AN,即
n2+
n﹣2=
(n+4)
整理得:n2+2n﹣8=0
解得:n1=﹣4(舍),n2=2
∴M(2,﹣3);
当
时,MN=2AN,即
n2+
n﹣2=2(n+4),
整理得:n2﹣n﹣20=0
解得:n1=﹣4(舍),n2=5,
∴M(5,﹣18).
综上所述:存在M1(0,2),M2(﹣3,2),M3(2,﹣3),M4(5,﹣18),使得以点A、M、N为顶点的三角形与△ABC相似.
-
科目: 来源: 题型:
查看答案和解析>>【题目】徐老师给爱好学习的小敏和小捷提出这样一个问题:如图1,△ABC中,∠B=2∠C,AD是∠BAC的平分线.求证:AB+BD=AC


小敏的证明思路是:在AC上截取AE=AB,连接DE.(如图2)
小捷的证明思路是:延长CB至点E,使BE=AB,连接AE.可以证得:AE=DE(如图3)请你任意选择一种思路继续完成下一步的证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠A=20°,CD是∠BCA的平分线,△CDA中,DE是CA边上的高,又有∠EDA=∠CDB,求∠B的大小.

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算
(1)(-4a2)·(ab-3b-1);
(2)(2x-5y)(-5y-2x)-(5y)2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在数轴上,已知在纸面上有一数轴(如图),折叠纸面.

(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数表示的点重合;
(2)若﹣1表示的点与3表示的点重合,5表示的点与数表示的点重合;
(3)若数轴上A、B两点之间的距离为c个单位长度,点A表示的有理数是a,并且A、B两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】问题引入:
(1)如图1,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC= (用α表示);
如图2,∠CBO=
∠ABC,∠BCO=
∠ACB,∠A=α,则∠BOC= (用α表示);拓展研究:
(2)如图3,∠CBO=
∠DBC,∠BCO=
∠ECB,∠A=α,猜想∠BOC= (用α表示),并说明理由;(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=
∠DBC,∠BCO=
∠ECB,∠A=α,请猜想∠BOC= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】化简x-y-(x+y)的最后结果是( )
A.0
B.2x
C.-2y
D.2x-2y
相关试题