科目: 来源: 题型:
【题目】到2020年,我国将全面建立起新的高考制度,新高考采用模式,其中语文、数学、英语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣、爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门(6选3)参加考试,满分各100分.为了顺利迎接新高考改革,某学校采用分层抽样的方法从高一年级1000名(其中男生550名,女生450名)学生中抽取了
名学生进行调查.
(1)已知抽取的名学生中有女生45名,求
的值及抽取的男生的人数.
(2)该校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目,且只能选择一个科目),得到如下
列联表.
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
(i)请将列联表补充完整,并判断是否有以上的把握认为选择科目与性别有关系.
(ii)在抽取的选择“地理”的学生中按性别分层抽样抽取6名,再从这6名学生中抽取2名,求这2名中至少有1名男生的概率.
附:,其中
.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆:
的右焦点为
,右顶点为
,已知椭圆离心率为
,过点
且与
轴垂直的直线被椭圆截得的线段长为3.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线
与椭圆
交于点
(
不在
轴上),垂直于
的直线与
交于点
,与
轴交于点
,若
,且
,求直线
斜率的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】下表是某公司2018年5~12月份研发费用(百万元)和产品销量(万台)的具体数据:
月 份 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
研发费用(百万元) | 2 | 3 | 6 | 10 | 21 | 13 | 15 | 18 |
产品销量(万台) | 1 | 1 | 2 | 2.5 | 6 | 3.5 | 3.5 | 4.5 |
(Ⅰ)根据数据可知与
之间存在线性相关关系,求出
与
的线性回归方程(系数精确到0.01);
(Ⅱ)该公司制定了如下奖励制度:以(单位:万台)表示日销售,当
时,每位员工每日奖励200元;当
时,每位员工每日奖励300元;当
时,每位员工每日奖励400元.现已知该公司某月份日销售
(万台)服从正态分布
(其中
是2018年5-12月产品销售平均数的二十分之一),请你估计每位员工该月(按30天计算)获得奖励金额总数大约多少元.
参考数据:,
,
,
,
参考公式:相关系数,其回归直线
中的
,若随机变量
服从正态分布
,则
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,倾斜角为
的直线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)若,求直线
的极坐标方程;
(2)若直线的斜率为
,直线
与曲线
相交于
两点,点
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知是抛物线
的焦点,
是抛物线
上一点过
三点的圆的圆心为
,点
到抛物线
的准线的距离为
.
(1)求抛物线的方程;
(2)若点的横坐标为4,过
的直线
与抛物线
有两个不同的交点
,直线
与圆
交于点
,且点
的横坐标大于4,求当
取得最小值时直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com