【题目】在平面直角坐标系
中,曲线
的参数方程是
(
为参数),以原点
为极点,
轴正半轴为极轴,建立极坐标系,直线
的极坐标方程为
.
(Ⅰ)求曲线
的普通方程与直线
的直角坐标方程;
(Ⅱ)已知直线
与曲线
交于
,
两点,与
轴交于点
,求
.
参考答案:
【答案】(1)直线l的直角坐标方程为x-y-2=0;(2)3.
【解析】试题分析:(1)消参得到曲线的普通方程,利用极坐标和直角坐标方程的互化公式求得直线的直角坐标方程;(2)先得到直线的参数方程,将直线的参数方程代入到圆的方程,得到关于
的一元二次方程,由根与系数的关系、参数的几何意义进行求解.
试题解析:(1)由曲线C的参数方程
(α为参数)![]()
(α为参数),
两式平方相加,得曲线C的普通方程为(x-1)2+y2=4;
由直线l的极坐标方程可得ρcosθcos
-ρsinθsin
=![]()
ρcosθ-ρsinθ=2,
即直线l的直角坐标方程为x-y-2=0.
(2)由题意可得P(2,0),则直线l的参数方程为
(t为参数).
设A,B两点对应的参数分别为t1,t2,则|PA|·|PB|=|t1|·|t2|,
将
(t为参数)代入(x-1)2+y2=4,得t2+
t-3=0,
则Δ>0,由韦达定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,底面半径为
,母线长为
的圆柱的轴截面是四边形
,线段
上的两动点
,
满足
.点
在底面圆
上,且
,
为线段
的中点. 
(Ⅰ)求证:
平面
;(Ⅱ)四棱锥
的体积是否为定值,若是,请求出该定值;若不是,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
:
的一个焦点与抛物线
的焦点重合,且过点
.过点
的直线
交椭圆
于
,
两点,
为椭圆的左顶点.(Ⅰ)求椭圆
的标准方程;(Ⅱ)求
面积的最大值,并求此时直线
的方程. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(Ⅰ)求函数
的单调区间;(Ⅱ)若对任意
,都有
恒成立,求实数
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(Ⅰ)求函数
的最小值;(Ⅱ)解不等式

-
科目: 来源: 题型:
查看答案和解析>>【题目】现有
六支足球队参加单循环比赛(即任意两支球队只踢一场比赛),第一周的比赛中
,各踢了
场,
各踢了
场,
踢了
场,且
队与
队未踢过,
队与
队也未踢过,则在第一周的比赛中,
队踢的比赛的场数是( )A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随即抽取
人对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的
人中的性别以及意见进行了分类,得到的数据如下表所示:男
女
总计
认为共享产品对生活有益



认为共享产品对生活无益



总计



(1)根据表中的数据,能否在犯错误的概率不超过
的前提下,认为对共享产品的态度与性别有关系?(2)现按照分层抽样从认为共享产品增多对生活无益的人员中随机抽取
人,再从
人中随机抽取
人赠送超市购物券作为答谢,求恰有
人是女性的概率.参与公式:

临界值表:














相关试题