【题目】如图,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:
(1)直线BC1∥平面EFPQ.
(2)直线AC1⊥平面PQMN.
参考答案:
【答案】(1)见解析(2) 见解析
【解析】试题分析:(1)只需利用三角形中位线定理证明直线BC1平行于平面EFPQ内一条直线FP即可;
(2)只需证明直线AC1垂直于平面PQMN内两条相交直线MN,PN即可。
试题解析:(1)连接AD1,由ABCD-A1B1C1D1是正方体,知AD1∥BC1,
![]()
因为F,P分别是AD,DD1的中点,所以FP∥AD1.
从而BC1∥FP.
而FP平面EFPQ,且BC1平面EFPQ,
故直线BC1∥平面EFPQ.
(2)连接AC,BD,则AC⊥BD.
由CC1⊥平面ABCD,BD平面ABCD,可得CC1⊥BD.
又AC∩CC1=C,所以BD⊥平面ACC1.
而AC1平面ACC1,所以BD⊥AC1.
因为M,N分别是A1B1,A1D1的中点,
所以MN∥BD,从而MN⊥AC1.
同理可证PN⊥AC1.
又PN∩MN=N,所以直线AC1⊥平面PQMN.
点晴:本题第一问考查的是直线与平面平行的判定。通过证明平面外的直线与平面内的直线线平行,从而证明线面平行。寻找线线平行的一般办法有:一、利用三角形中位线定理,二、利用平形四边形的性质;三、利用两直线都垂直于同一平面,两直线平行;四、利用线面平行的性质等。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,某小区准备将闲置的一直角三角形(其中∠B=
,AB=a,BC=
a)地块开发成公共绿地,设计时,要求绿地部分有公共绿地走道MN,且两边是两个关于走道MN对称的三角形(△AMN和△A′MN),现考虑方便和绿地最大化原则,要求M点与B点不重合,A′落在边BC上,设∠AMN=θ.
(1)若θ=
时,绿地“最美”,求最美绿地的面积;(2)为方便小区居民的行走,设计时要求将AN,A′N的值设计最短,求此时绿地公共走道的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{bn}中的b3、b4、b5.
(1)求数列{bn}的通项公式;
(2)数列{bn}的前n项和为Sn,求证:数列
是等比数列. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.

.求证:(Ⅰ)PA∥平面BDE;(Ⅱ)平面PAC⊥平面BDE;(III)若PB与底面所成的角为600, AB=2a,求三棱锥E-BCD的体积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知曲线
在点
处的切线
平行直线
,且点
在第三象限.(1)求
的坐标;(2)若直线
, 且
也过切点
,求直线
的方程. -
科目: 来源: 题型:
查看答案和解析>>【题目】给出下列命题:
①点P(-1,4)到直线3x+4y =2的距离为3.
②过点M(-3,5)且在两坐标轴上的截距互为相反数的直线方程为
.③命题“x∈R,使得x2﹣2x+1<0”的否定是真命题;
④“x ≤1,且y≤1”是“x + y ≤2”的充要条件.
其中不正确命题的序号是 _______________ .(把你认为不正确命题的序号都填上)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
。(Ⅰ)当a=2,求函数f(x)的图象在点(1,f(1) )处的切线方程;
(Ⅱ)当a>0时,求函数f(x)的单调区间。
相关试题