【题目】已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.
(1)求数列{bn}的通项公式;
(2)令cn=
,Tn是数列{cn}的前n项和,求证:![]()
参考答案:
【答案】(1)bn=3n+1;(2)见解析.
【解析】试题分析:(1)求等比数列的通项公式,关键是求出首项和公比,这可直接用首项
和公比
表示出已知并解出即可(可先把已知化简后再代入);(2)求出
的表达式后,用错位相减法求其前
项和,然后求其最小值即可得结论.
试题解析:(1) 由题意知,当n≥2时,an=Sn-Sn-1=6n+5;当n=1时,a1=S1=11,也符合上式,所以an=6n+5.
设数列{bn}的公差为d.由
即
解得![]()
所以bn=3n+1.
(2) 由(1)知cn=
=3(n+1)·2n+1.
又Tn=c1+c2+…+cn,
得Tn=3×[2×22+3×23+…+(n+1)×2n+1],
2Tn=3×[2×23+3×24+…+(n+1)×2n+2],
两式作差,得
-Tn=3×[2×22+23+24+…+2n+1-(n+1)×2n+2]
=3×[4+
-(n+1)×2n+2]=-3n·2n+2,
所以Tn=3n·2n+2.
![]()
【 方法点睛】本题主要考查等差数列的通项以及错位相减法求数列的前
项和,属于中档题.一般地,如果数列
是等差数列,
是等比数列,求数列
的前
项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列
的公比,然后作差求解, 在写出“
”
与“
” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“
”的表达式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设数列
是首项为0的递增数列,
,满足:对于任意的
总有两个不同的根,则
的通项公式为_________ -
科目: 来源: 题型:
查看答案和解析>>【题目】口袋中装有质地大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸一个球,记下编号,放回后乙再摸一个球,记下编号.如果两个编号的和为偶数就算甲胜,否则算乙胜.
(1)求甲胜且编号的和为6的事件发生的概率;
(2)这种游戏规则公平吗?说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系
中,已知圆
,圆
.(1)若过点
的直线
被圆
截得的弦长为
,求直线
的方程;(2)圆
是以1为半径,圆心在圆
:
上移动的动圆 ,若圆
上任意一点
分别作圆
的两条切线
,切点为
,求
的取值范围;(3)若动圆
同时平分圆
的周长、圆
的周长,则动圆
是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某城市
户居民的月平均用电量(单位:度),以
,
,
,
,
,
,
分组的频率分布直方图如图.
(I)求直方图中
的值; (II)求月平均用电量的众数和中位数;
(III)在月平均用电量为
,
,
,
的四组用户中,用分层抽样的方法抽取
户居民,则月平均用电量在
的用户中应抽取多少户? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知四棱锥
,底面
是
、边长为
的菱形,又
底
,且
,点
分别是棱
的中点.
(1)证明:
平面
;(2)证明:平面
平面
;(3)求点
到平面
的距离.[ -
科目: 来源: 题型:
查看答案和解析>>【题目】正方体
的棱长为1,
分别是棱
,
的中点,过直线
的平面分别与棱
、
交于
,设
,
,给出以下四个命题:①四边形
为平行四边形;②若四边形
面积
,
,则
有最小值;③若四棱锥
的体积
,
,则
为常函数;④若多面体
的体积
,
,则
为单调函数.其中假命题为( )
A.① ③ B.② C.③④ D.④
相关试题