【题目】.某校从高二年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100]后得到如图所示的频率分布直方图.
![]()
(1)求图中实数a的值;
(2)若该校高二年级共有学生640人,试估计该校高二年级期中考试数学成绩不低于60分的学生人数;
(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率.
参考答案:
【答案】(1) a=0.03;(2)544;(2) P(M)=
.
【解析】试题分析: (1)由频率分布直方图的性质能求出
的值.
(2)先求出数学成绩不低于60分的概率,由此能求出数学成绩不低于60分的人数.
(3)数学成绩在
的学生为2人,数学成绩在
的学生人数为4人,由此利用列举法能求出这2名学生的数学成绩之差的绝对值大于10的槪率.
试题解析:
(1)由于图中所有小矩形的面积之和等于1,所以10×(0.005+0.01+0.02+a+0.025+0.01)=1.
解得a=0.03.
(2)根据频率分布直方图,成绩不低于60分的频率为110×(0.005+0.01)=0.85由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为640×0.85=544人 .
(3)成绩在[40,50)分数段内的人数为40×0.05=2人,分别记为A,B,成绩在[90,100]分数段内的人数为40×0.1=4人,分别记为C,D,E,F.
若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种.
如果两名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这两名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这两名学生的数学成绩之差的绝对值一定大于10.
记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共7种.所以所求概率为P(M)=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
,且(1﹣2x)n=a0+a1x+a2x2+a3x3+…+anxn .
(Ⅰ)求n的值;
(Ⅱ)求a1+a2+a3+…+an的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2017年8月18日某省x个监测点数据统计如下:
空气污染指数(单位:μg/m3)
[0,50]
(50,100]
(100,150]
(150,200]
监测点个数
15
40
y
10

(1)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;
(2)在空气污染指数分别为50~100和150~200的监测点中,用分层抽样的方法抽取5个监测点,从中任意选取2个监测点,事件A“两个都为良”发生的概率是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集为[﹣3,3].
(Ⅰ)解不等式:f(x)+f(x+2)>0;
(Ⅱ)若a,b,c均为正实数,且满足a+b+c=m,求证:
+
+
≥3. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知在(
﹣
)n的展开式中,第6项为常数项.
(1)求n;
(2)求含x2项的系数;
(3)求展开式中所有的有理项. -
科目: 来源: 题型:
查看答案和解析>>【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.
日需求量n
14
15
16
17
18
19
20
频 数
10
20
16
16
15
13
10
(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
相关试题