【题目】已知a,b∈R,若a2+b2﹣ab=1,则ab的取值范围是 .
参考答案:
【答案】[
,1]
【解析】解:当ab>0时, ∵a,b∈R,且a2+b2﹣ab=1,
∴a2+b2=ab+1,
又a2+b2≥2ab当且仅当a=b时“=”成立;
∴ab+1≥2ab,
∴ab≤1,当且仅当a=b=±1时“=”成立;
即0<ab≤1;
当ab=0时,不妨设a=0,则b=±1,满足题意;
当ab<0时,
又∵a2+b2≥﹣2ab,
∴ab+1≥﹣2ab,
∴﹣3ab≤1,
∴ab≥﹣
,
当且仅当a=
,b=﹣
,或a=﹣
、b=
时“=”成立;
即0>ab≥﹣
;
综上,ab的取值范围是[﹣
,1].
故答案为[
,1].
灵活应用基本不等式a2+b2≥2ab,即可求出ab的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】记max{x,y}=
,若f(x),g(x)均是定义在实数集R上的函数,定义函数h(x)=max{f(x),g(x)},则下列命题正确的是( )
A.若f(x),g(x)都是单调函数,则h(x)也是单调函数
B.若f(x),g(x)都是奇函数,则h(x)也是奇函数
C.若f(x),g(x)都是偶函数,则h(x)也是偶函数
D.若f(x)是奇函数,g(x)是偶函数,则h(x)既不是奇函数,也不是偶函数 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(Ⅰ)讨论
的单调性;(Ⅱ)设
,若对
,
,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,定圆C半径为2,A为圆C上的一个定点,B为圆C上的动点,若点A,B,C不共线,且|
|
|对任意t∈(0,+∞)恒成立,则
= . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准
(吨),用水量不超过
的部分按平价收费,超过
的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照
,
,…,
分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中
的值;(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使
的居民每月的用水量不超过标准
(吨),估计
的值,并说明理由; -
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系
中,以原点为极点,
轴的非负半轴为极轴建立极坐标系,已知直线
的参数方程为
(
为参数),曲线
的极坐标方程为
,直线
与曲线
交于
两点,与
轴交于点
.(1)求直线
的普通方程和曲线
的直角坐标方程;(2)求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某篮球运动员在一个赛季的40场比赛中的得分的茎叶图如图所示:则中位数与众数分别为( )

A.3与3
B.23与3
C.3与23
D.23与23
相关试题