【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1∶3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文、理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图如图所示.
![]()
(1)求a的值,并计算所抽取样本的平均值
(同一组中的数据用该组区间的中点值作代表);
(2)填写下面的2×2列联表,并判断能否有超过95%的把握认为“获奖与学生的文、理科有关”?
文科生 | 理科生 | 合计 | |
获奖 | 5 | ||
不获奖 | |||
合计 | 200 |
附表及公式: ![]()
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考答案:
【答案】(1)答案见解析;(2)答案见解析.
【解析】试题分析:(1)利用频率和为1,求a的值,利用同一组中的数据用该组区间的中点值作代表,计算所抽取样本的平均值;(2)求出K2,与临界值比较,即可得出结论
解析:
(1)a=[1-(0.01+0.015+0.03+0.015+0.005)×10]÷10=0.025,
=45×0.1+55×0.15+65×0.25+75×0.3+85×0.15+95×0.05=69.
(2)文科生人数为200×
=50,获奖学生人数为200×(0.015+0.005)×10=40,故2×2列联表如下:
文科生 | 理科生 | 合计 | |
获奖 | 5 | 35 | 40 |
不获奖 | 45 | 115 | 160 |
合计 | 50 | 150 | 200 |
因为K2=
≈4.167>3.841,
所以有超过95%的把握认为“获奖与学生的文、理科有关”.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知定义在区间(0,+∞)上的函数f(x)满足f(
)=f(x1)-f(x2),且当x>1时,f(x)<0.(1)求f(1)的值;
(2)判断f(x)的单调性;
(3)若f(3)=-1,解不等式f(|x|)<-2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=sinx,若存在x1 , x2 , …,xn满足0≤x1<x2<…<xn≤nπ,n∈N+ , 且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm﹣1)﹣f(xm)|=12,(m≥2,m∈N+),当m取最小值时,n的最小值为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】若关于
的不等式
恰好有4个整数解,则实数
的取值范围是( )A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
的左右焦点分别为
,上顶点为
,若直线
的斜率为1,且与椭圆的另一个交点为
,
的周长为
.(1)求椭圆的标准方程;
(2)过点
的直线
(直线
的斜率不为1)与椭圆交于
两点,点
在点
的上方,若
,求直线
的斜率. -
科目: 来源: 题型:
查看答案和解析>>【题目】函数f(x)是这样定义的:对于任意整数m,当实数x满足不等式|x﹣m|<
时,有f(x)=m.
(1)求函数f(x)的定义域D,并画出它在x∈D∩[0,3]上的图象;
(2)若数列an=2+10(
)n , 记Sn=f(a1)+f(a2)+f(a3)+…+f(an),求Sn . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图:某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt△FHE,H是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=10
米,记∠BHE=θ. 
(1)试将污水净化管道的长度L表示为θ的函数,并写出定义域;
(2)问:当θ取何值时,污水净化效果最好?并求出此时管道的长度.
相关试题