【题目】空气质量按照空气质量指数大小分为七档(五级),相对应空气质量的七个类别,指数越大,说明污染的情况越严重,对人体危害越大.
指数 | 级别 | 类别 | 户外活动建议 |
| Ⅰ | 优 | 可正常活动 |
| Ⅱ | 良 | |
| Ⅲ | 轻微污染 | 易感人群症状有轻度加剧,健康人群出现刺激症状,心脏病和呼吸系统疾病患者应减少体积消耗和户外活动. |
| 轻度污染 | ||
| Ⅳ | 中度污染 | 心脏病和肺病患者症状显著加剧,运动耐受力降低,健康人群中普遍出现症状,老年人和心脏病、肺病患者应减少体力活动. |
| 中度重污染 | ||
| Ⅴ | 重污染 | 健康人运动耐受力降低,由明显强烈症状,提前出现某些疾病,老年人和病人应当留在室内,避免体力消耗,一般人群应尽量减少户外活动. |
现统计邵阳市市区2016年1月至11月连续60天的空气质量指数,制成如图所示的频率分布直方图.
![]()
(1)求这60天中属轻度污染的天数;
(2)求这60天空气质量指数的平均值;
(3)一般地,当空气质量为轻度污染或轻度污染以上时才会出现雾霾天气,且此时出现雾霾天气的概率为
,请根据统计数据,求在未来2天里,邵阳市恰有1天出现雾霾天气的概率.
参考答案:
【答案】(1)
;(2)
;(3)
.
【解析】试题分析: (1)根据频率分布直方图得各小长方形面积等于对应区间的概率,先求出60天中属轻度污染对应区间的概率,再根据频数等于总数与对应频率乘积得所求天数,(2)根据平均值等于各区间组中值与对应概率乘积的和,可求出平均值,(3)先求出现雾霾天气的概率:空气质量为轻度污染或轻度污染以上对应概率的
,再根据独立重复试验确定2天中恰有1天出现雾霾天气的概率.
试题解析:(1)依题意知,轻度污染即空气质量指数在
之间,共有
天.
(2)由直方图知60天空气质量指数的平均值为
.
(3)空气质量为轻度污染或轻度污染以上的概率
,
∴出现雾霾概率为
,
∴未来2天里,恰有1天为雾霾天气的概率
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为响应市政府“绿色出行”的号召,王老师每个工作日上下班由自驾车改为选择乘坐地铁或骑共享单车这两种方式中的一种出行.根据王老师从2017年3月到2017年5月的出行情况统计可知,王老师每次出行乘坐地铁的概率是0.4,骑共享单车的概率是0.6.乘坐地铁单程所需的费用是3元,骑共享单车单程所需的费用是1元.记王老师在一个工作日内上下班所花费的总交通费用为X元,假设王老师上下班选择出行方式是相互独立的.
(I)求X的分布列和数学期望
;(II)已知王老师在2017年6月的所有工作日(按22个工作日计)中共花费交通费用110元,请判断王老师6月份的出行规律是否发生明显变化,并依据以下原则说明理由.
原则:设
表示王老师某月每个工作日出行的平均费用,若
,则有95%的把握认为王老师该月的出行规律与前几个月的出行规律相比有明显变化.(注:
) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直四棱柱
底面
直角梯形,
∥
,
,
是棱
上一点,
,
,
,
,
.
(1)求异面直线
与
所成的角;(2)求证:
平面
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
是偶函数.(1)求
的值;(2)设
,若函数
与
的图象有且只有一个公共点,求实数
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆M的方程为x2+(y-2)2=1,直线l的方程为x-2y=0,点P在直线l上,过点P作圆M的切线PA,PB,切点为A,B.
(Ⅰ)若∠APB=60°,试求点P的坐标;
(Ⅱ)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD=
时,求直线CD的方程. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程
关于时间
的函数关系式分别为
,
,
,
,有以下结论:①当
时,甲走在最前面;②当
时,乙走在最前面;③当
时,丁走在最前面,当
时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;
⑤如果它们一直运动下去,最终走在最前面的是甲.
其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知边长为
米的正方形钢板有一个角被锈蚀,其中
米,
米.为了合理利用这块钢板,将在五边形
内截取一个矩形块
,使点
在边
上.
(1)设
米,
米,将
表示成
的函数,求该函数的解析式及定义域;(2)求矩形
面积的最大值.
相关试题