【题目】已知等差数列{an}的首项为a,公差为b,方程ax2-3x+2=0的解为1和b,
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=an·2n,求数列{bn}的前n项和Tn.
参考答案:
【答案】(1) an=2n-1(2) Tn=(2n-3)·2n+1+6
【解析】试题分析:(1)由方程ax2-3x+2=0的两根为x1=1,x2=b代入方程可得
求出
,求得
;(2)由(1)得bn=(2n-1)2n,由此利用错位相减法能够求出数列{bn}的前n项和Tn.
试题解析:
(1)因为方程ax2-3x+2=0的两根为x1=1,x2=b,
可得
,故a=1,b=2.所以an=2n-1.
(2)由(1)得bn=(2n-1)·2n,
所以Tn=b1+b2+…+bn=1·2+3·22+…+(2n-1)·2n, ①
2Tn=1·22+3·23+…+(2n-3)·2n+(2n-1)·2n+1, ②
②-①得
Tn=-2(2+22+…+2n)+(2n-1)·2n+1+2=(2n-3)·2n+1+6.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南
方向
的海面P处,且
,并以
的速度向西偏北
方向移动,台风侵袭的范围为圆形区域,当前半径为
,并以
的速度不断增大,问几小时后该城市开始受到台风的侵袭?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点
是拋物线
的焦点, 若点
在
上,且
.(1)求
的值;(2)若直线
经过点
且与
交于
(异于
)两点, 证明: 直线
与直线
的斜率之积为常数. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=ax+
(a>1)
(1)证明:函数f(x)在(﹣1,+∞)上为增函数;
(2)用反证法证明f(x)=0没有负数根. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式.
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
过点
,且离心率为
.(Ⅰ)求椭圆
的方程;(Ⅱ)设直线
与椭圆
交于
、
两点,以
为对角线作正方形
,记直线
与
轴的交点为
,问
、
两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=﹣x3+ax2+bx+c图象上的点P(1,m)处的切线方程为y=﹣3x+1
(1)若函数f(x)在x=﹣2时有极值,求f(x)的表达式.
(2)若函数f(x)在区间[﹣2,0]上单调递增,求实数b的取值范围.
相关试题