【题目】已知
分别为椭圆
的上、下焦点,
是抛物线
的焦点,点
是
与
在第二象限的交点,且
.
(1)求椭圆
的方程;
(2)与圆
相切的直线
交椭圆
于
,
若椭圆
上一点
满足
,求实数
的取值范围.
![]()
参考答案:
【答案】(1)
(2) ![]()
【解析】试题分析:(1)由题意知
,所以
,又由抛物线定义可知
,得
,于是易知
,从而
,由椭圆定义知,
,得
,故
,从而椭圆的方程为
;(2)设
,则由
知,
,
,且
①,又直线
与圆
相切,所以有
,由
,可得
②,又联立
,消去
得
,且
恒成立,且
,
,所以
,所以得
,代入①,结合②得:
,
,利用二次函数求分母取值范围
,所以
,即
的取值范围为
.
试题解析:(1)由题意
,所以
,又由抛物线定义可知
,得
,
于是易知
,从而
,
由椭圆定义知,
,得
,故
,
从而椭圆的方程为
.
(2)设
,则由
知,
,
,且
①
又直线
与圆
相切,所以有
,
由
,可得
②
又联立
,消去
得![]()
且
恒成立,且
,
,
所以
,所以得
,
代入①式得
,所以
,
又将②式代入得,
,
,
易知
,且
,所以
,
所以
的取值范围为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
在
处有极值10.(Ⅰ)求实数
,
的值;(Ⅱ)设
时,讨论函数
在区间
上的单调性. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知O为坐标原点,双曲线C:
=1(a>0,b>0)的左焦点为F(﹣c,0)(c>0),以OF为直径的圆交双曲线C的渐近线于A,B,O三点,且(
+
)
=0,若关于x的方程ax2+bx﹣c=0的两个实数根分别为x1和x2 , 则以|x1|,|x2|,2为边长的三角形的形状是( )
A.钝角三角形
B.直角三角形
C.锐角三角形
D.等腰直角三角形 -
科目: 来源: 题型:
查看答案和解析>>【题目】近年来我国电子商务行业迎来发展的新机遇,2016年双11期间,某购物平台的销售业
绩高达1207亿人民币。与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.
(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量
:①求对商品和服务全好评的次数
的分布列;②求
的数学期望和方差.
(
,其中
)对服务好评
对服务不满意
合计
对商品好评
140
对商品不满意
10
合计
200
-
科目: 来源: 题型:
查看答案和解析>>【题目】给出下列命题:
1)已知两平面的法向量分别为
=(0,1,0),
=(0,1,1),则两平面所成的二面角为45°或135°;
2)若曲线
+
=1表示双曲线,则实数k的取值范围是(﹣∞,﹣4)∪(1,+∞);
3)已知双曲线方程为x2﹣
=1,则过点P(1,1)可以作一条直线l与双曲线交于A,B两点,使点P是线段AB的中点.
其中正确命题的序号是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】设F(x)=f(x)+f(﹣x)在区间
是单调递减函数,将F(x)的图象按向量
平移后得到函数G(x)的图象,则G(x)的一个单调递增区间是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
是定义在(﹣∞,+∞)上的奇函数,且满足 
(1)求实数a,b,并确定函数f(x)的解析式
(2)用定义证明f(x)在(﹣1,1)上是增函数.
相关试题