【题目】设函数f(x)=|2x﹣1|﹣|x+2|.
(1)解不等式f(x)>3;
(2)若x0∈R,使得f(x0)+2m2<4m,求实数m的取值范围.
参考答案:
【答案】
(1)解:当x<﹣2时,f(x)=|2x﹣1|﹣|x+2|=1﹣2x+x+2=﹣x+3,f(x)>3,即﹣x+3>3,解得x<0,
又x<﹣2,∴x<﹣2;
当
时,f(x)=|2x﹣1|﹣|x+2|=1﹣2x﹣x﹣2=﹣3x﹣1,f(x)>3,即﹣3x﹣1>3,解得
,又
,∴
;
当
时,f(x)=|2x﹣1|﹣|x+2|=2x﹣1﹣x﹣2=x﹣3,f(x)>3,即x﹣3>3,解得x>6,又
,∴x>6.
综上,不等式f(x)>3的解集为
.
(2)解:f(x)=|2x﹣1|﹣|x+2|=
,
∴
.
∵x0∈R,使得
,
∴
,
整理得4m2﹣8m﹣5<0,
解得
.
因此实数m的取值范围是 ![]()
【解析】(1)利用零点分区间讨论去掉绝对值符号,化为分段函数,在每一个前提下去解不等式,每一步的解都要和前提条件找交集得出每一步的解,最后把每一步最后结果找并集得出不等式的解;(2)根据第一步所化出的分段函数求出函数f(x)的最小值,若x0∈R,使得f(x0)+2m2<4m成立,只需4m﹣2m2>fmin(x),解出实数m的取值范围.
【考点精析】本题主要考查了绝对值不等式的解法的相关知识点,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】求适合下列条件的双曲线的方程:
(1) 虚轴长为12,离心率为
;(2) 焦点在x轴上,顶点间距离为6,渐近线方程为
. -
科目: 来源: 题型:
查看答案和解析>>【题目】若F1,F2是双曲线
的两个焦点(1)若双曲线上一点M到左焦点F1的距离等于7,求点M到右焦点F2的距离;
(2)若P是双曲线左支上的点,且|PF1|·|PF2|=32,试求△F1PF2的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC的内角A,B,C所对的边分别为a,b,c,且a,b,c成等比数列,若sinB=
,cosB=
,则a+c的值为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知在△ABC中,角A,B,C的对边分别是a、b、c,且2sin2A+3cos(B+C)=0.
(1)求角A的大小;
(2)若△ABC的面积S=5
,a=
,求sinB+sinC的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数列{an}前n项和为Sn , 满足Sn=2an﹣2n(n∈N*).
(1)证明:{an+2}是等比数列,并求{an}的通项公式;
(2)数列{bn}满足bn=log2(an+2),Tn为数列{
}的前n项和,若Tn<a对正整数a都成立,求a的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知等边△ABC中,E,F分别为AB,AC边的中点,N为BC边上一点,且CN=
BC,将△AEF沿EF折到△A′EF的位置,使平面A′EF⊥平面EF﹣CB,M为EF中点. 
(1)求证:平面A′MN⊥平面A′BF;
(2)求二面角E﹣A′F﹣B的余弦值.
相关试题