【题目】《九章算术》是我国古代数学名著,也是古代东方数学的代表作.书中有如下问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“已知直角三角形两直角边长分别为5步和12步,问其内接正方形边长为多少步?”现若向此三角形内投豆子,则落在其内接正方形内的概率是( )
A.![]()
B.![]()
C.![]()
D.![]()
参考答案:
【答案】C
【解析】解:由题意,直角三角形两直角边长分别为5步和12步,面积为30,设内接正方形边长为x,则
,解得x=
,所以正方形 的面积为
, ∴向此三角形内投豆子,则落在其内接正方形内的概率是
,
故选:C.
【考点精析】利用几何概型对题目进行判断即可得到答案,需要熟知几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
为坐标原点,
是椭圆
上的点,设动点
满足
.(1)求动点
的轨迹
的方程;(2)若直线
与曲线
相交于
,
两个不同点,求
面积的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A.命题“若x2=9,则x=±3”的否命题为“若x2=9,则x≠±3”
B.若命题P:?x0∈R,
,则命题?P:?x∈R, 
C.设
是两个非零向量,则“
是“
夹角为钝角”的必要不充分条件
D.若命题P:
,则¬P: 
-
科目: 来源: 题型:
查看答案和解析>>【题目】为选拔选手参加“中国汉字听写大全”,某中学举行了一次“汉字听写大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).

(Ⅰ)求样本容量n和频率分布直方图中的x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国汉字听写大会”,每次抽取1人,求在第1次抽取的成绩低于90分的前提下,第2次抽取的成绩仍低于90分的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f(x)=﹣2x2+4x.设f(x)在[2n﹣2,2n)上的最大值为an(n∈N*),且{an}的前n项和为Sn , 则Sn=( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在同一平面内,点P位于两平行直线l1、l2两侧,且P到l1 , l2的距离分别为1,3,点M,N分别在l1 , l2上,|
+
|=8,则
的最大值为( ) 
A.15
B.12
C.10
D.9 -
科目: 来源: 题型:
查看答案和解析>>【题目】如下图所示,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成的角为60°.

(1)求证:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
相关试题