【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明:PA∥平面EDB;
(2)证明:PB⊥平面EFD.![]()
参考答案:
【答案】解:(1)证明:连接AC,AC交BD于O.连接EO.
∵底面ABCD是正方形,∴点O是AC的中点.
∴在△PAC中,EO是中位线,∴PA∥EO,
∵EO平面EDB,且PA平面EDB,
∴PA∥平面EDB.
(2)证明:∵PD⊥底面ABCD,且DC底面ABCD,∴PD⊥BC.
∵底面ABCD是正方形,∴DC⊥BC,
∴BC⊥平面PDC.∵DE平面PDC,∴BC⊥DE.
又∵PD=DC,E是PC的中点,∴DE⊥PC.∴DE⊥平面PBC.
∵PB平面PBC,∴DE⊥PB.又∵EF⊥PB,且DE∩EF=E,
∴PB⊥平面EFD.![]()
【解析】(1)由题意连接AC,AC交BD于O,连接EO,则EO是中位线,证出PA∥EO,由线面平行的判定定理知
PA∥平面EDB;
(2)由PD⊥底面ABCD得PD⊥DC,再由DC⊥BC证出BC⊥平面PDC,即得BC⊥DE,再由ABCD是正方形证出DE⊥平面PBC,则有DE⊥PB,再由条件证出PB⊥平面EFD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线
关于直线
对称的直线为
,直线
与椭圆
分别交于点
、
和
、
,记直线
的斜率为
.(Ⅰ)求
的值;(Ⅱ)当
变化时,试问直线
是否恒过定点? 若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系
中,已知椭圆
的离心率为
,且过点
.(1)求
的方程;(2)若动点
在直线
上,过
作直线交椭圆
于
两点,使得
,再过
作直线
,证明:直线
恒过定点,并求出该定点的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线
的焦点到准线的距离为
,直线
与抛物线
交于
两点,过这两点分别作抛物线
的切线,且这两条切线相交于点
.(1)若
的坐标为
,求
的值;(2)设线段
的中点为
,点
的坐标为
,过
的直线
与线段
为直径的圆相切,切点为
,且直线
与抛物线
交于
两点,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四棱锥
的底面
为平行四边形,平面
平面
,
,
.(Ⅰ)求证:
;(Ⅱ)若三角形
是边长为
的等边三角形,求三棱锥
外接球的表面积. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆C:x2+y2+2x﹣4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)从圆C外一点P(x1 , y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,点
为
的中点,点
为线段
垂直平分线上的一点,且
,四边形
为矩形,固定边
,在平面
内移动顶点
,使得
的内切圆始终与
切于线段
的中点,且
在直线
的同侧,在移动过程中,当
取得最小值时,点
到直线
的距离为__________.
相关试题