【题目】直线y=a分别与曲线y=2(x+1),y=x+lnx交于A、B,则|AB|的最小值为( )
A.3
B.2
C.![]()
D.![]()
参考答案:
【答案】C
【解析】解:设A(x1 , a),B(x2 , a),则2(x1+1)=x2+lnx2 ,
∴x1=
(x2+lnx2)﹣1,
∴|AB|=x2﹣x1=
(x2﹣lnx2)+1,
令y=
(x﹣lnx)+1,则y′=
(1﹣
),
∴函数在(0,1)上单调递减,在(1,+∞)上单调递增,
∴x=1时,函数的最小值为
,
故选:C.
【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正四面体ABCD中,
是
的中心,
分别是
上的动点,且
.
(1)若
平面
,求实数
的值;(2)若
,正四面体ABCD的棱长为
,求平面
和平面
所成的角余弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】设
,g(x)=ax+5﹣2a(a>0).
(1)求f(x)在x∈[0,1]上的值域;
(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】某班同学利用寒假进行社会实践活动,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数
分组
低碳族人数
占本组的频率
第一组
[25,30)
120
0.6
第二组
[30,35)
195
p
第三组
[35,40)
100
0.5
第四组
[40,45)
a
0.4
第五组
[45,50)
30
0.3
第六组
[50,55)
15
0.3

(1)补全频率分布直方图并求n、a、p的值;
(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知定义域为R的函数f(x)=
是奇函数.
(1)求b的值;
(2)用定义法证明函数f(x)在R上是减函数;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】通过对某城市一天内单次租用共享自行车的时间
分钟到
钟的
人进行统计,按照租车时间
,
,
,
,
分组做出频率分布直方图,并作出租用时间和茎叶图(图中仅列出了时间在
,
的数据).
(1)求
的频率分布直方图中的
;(2)从租用时间在
分钟以上(含
分钟)的人数中随机抽取
人,设随机变量
表示所抽取的
人租用时间在
内的人数,求随机变量
的分布列及数学期望. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数f(x)=x2﹣ax+a(x∈R)同时满足:
①不等式f(x)≤0的解集有且只有一个元素;
②在定义域内存在0<x1<x2 , 使得不等式f(x1)>f(x2)成立.设数列{an}的前n项和Sn=f(n).
(1)求f(x)的表达式;
(2)求数列{an}的通项公式;
(3)设
,cn=
,{cn}的前n项和为Tn , 若Tn>2n+t对任意n∈N,n≥2恒成立,求实数t的取值范围.
相关试题