【题目】有13名医生,其中女医生6人,现从中抽调5名医生组成医疗小组前往灾区,若医疗小组至少有2名男医生,同时至多有3名女医生,设不同的选派方法种数为N,则下列等式:
①C135﹣C71C64;②C72C63+C73C62+C74C61+C75;
③C135﹣C71C64﹣C65; ④C72C113;
其中能成为N的算式是______.
参考答案:
【答案】②③
【解析】13名医生,其中女医生6人,男医生7人。
利用直接法,2男3女:
6;3男2女:
;4男1女:
;5男:
,所以N= C72C63+C73C62+C74C61+C75;
利用间接法:13名医生,任取5人,减去4、5名女医生的情况,
即N= C135﹣C71C64﹣C65;
所以能成为N的算式是②③.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,三棱柱
中,侧面
,
,
且
.
(Ⅰ)求证:
;(Ⅱ)求二面角
的余弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知甲、乙、丙、丁、戊、己等6人.(以下问题用数字作答)
(1)邀请这6人去参加一项活动,必须有人去,去几人自行决定,共有多少种不同的情形?
(2)这6人同时加入6项不同的活动,每项活动限1人,其中甲不参加第一项活动,乙不参加第三项活动,共有多少种不同的安排方法?
(3)将这6人作为辅导员安排到3项不同的活动中,每项活动至少安排1名辅导员;求丁、戊、己恰好被安排在同一项活动中的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
.(Ⅰ)证明:
;(Ⅱ)证明:当
时,
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,
.(Ⅰ)记
的极小值为
,求
的最大值;(Ⅱ)若对任意实数
恒有
,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥
中,
为正三角形,
,
,
,
平面
.
(Ⅰ)点
在棱
上,试确定点
的位置,使得
平面
;(Ⅱ)求二面角
的余弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.
(1)摸出的3个球为白球的概率是多少?
(2)摸出的3个球为2个黄球1个白球的概率是多少?
(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
相关试题