【题目】东亚运动会将于2013年10月6日在天津举行.为了搞好接待工作,组委会打算学习北京奥运会招募大量志愿者的经验,在某学院招募了16名男志愿者和14名女志愿者,调查发现,男女志愿者中分别有10人和6人喜爱运动,其余人不喜欢运动.
(1)根据以上数据完成以下2×2列联表:
喜爱运动 | 不喜爱运动 | 总计 | |
男 | 10 | 16 | |
女 | 6 | 14 | |
总计 | 30 |
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?
(3)如果从喜欢运动的女志愿者中(其中恰有4人会外语),抽取2名负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?
参考公式:K2=
,其中
n=a+b+c+d.
参考数据:
P(K2≥k) | 0.40 | 0.25 | 0.10 | 0.010 |
k | 0.708 | 1.323 | 2.706 | 6.635 |
参考答案:
【答案】(1)见解析;(2)不能;(3)![]()
【解析】试题分析:
(1)利用总数和喜爱运动人数可求得不喜爱运动人数,从而得出喜爱运动、不喜爱运动总人数;
(2)利用
公式计算出
可得结论;
(3)从6人中选2人,至少有1人胜任翻译工作的对立事件是没有1人胜任翻译工作,可把6人编号,写出选2人的所有可能,从中得出不胜任翻译的选法数,利用对立事件概率公式可计算概率.
试题解析:
(1)
喜爱运动 | 不喜爱运动 | 总计 | |
男 | 10 | 6 | 16 |
女 | 6 | 8 | 14 |
总计 | 16 | 14 | 30 |
(2)根据已知数据可求得:
K2=
≈1.157 5<2.706,
因此,在犯错误的概率不超过0.10的前提下不能判断喜爱运动与性别有关.
(3)喜欢运动的女志愿者有6人,设喜欢运动的女志愿者分别为A,B,C,D,E,F,其中A,B,C,D会外语,则从这6人中任取2人,共15种取法.其中两人都不会外语的只有EF一种取法.故抽出的志愿者之中至少有1人能胜任翻译工作的概率是P=1-
=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四棱锥
的底面为菱形 且∠ABC=120°,PA⊥底面ABCD,AB=2,PA=
, 
(1)求证:平面PBD⊥平面PAC;
(2)求三棱锥P--BDC的体积。
(3)在线段PC上是否存在一点E,使PC⊥平面EBD成立.如果存在,求出EC的长;如果不存在,请说明理由。
-
科目: 来源: 题型:
查看答案和解析>>【题目】设p:实数x满足
,其中
,命题
实数
满足|x-3|≤1 .
(1)若
且
为真,求实数
的取值范围;(2)若
是
的充分不必要条件,求实数a的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.若
的一个零点附近的函数值如下所示,请用二分法求出方程
的一个正实数解的近似值(精确度0.1).
,
,
,
,
,
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
的离心率为
,以原点
为圆心,椭圆
的长半轴长为半径的圆与直线
相切.(Ⅰ)求椭圆
的标准方程;(Ⅱ)已知点
,
为动直线
与椭圆
的两个交点,问:在
轴上是否存在定点
,使得
为定值?若存在,试求出点
的坐标和定值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】设函数f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)>2;
(2)若函数f(x)≥m恒成立,求m的最大整数值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
=1(a>b>0)的离心率e=
,连结椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A,B.已知点A的坐标为(-a,0).若|AB|=
,求直线l的倾斜角.
相关试题