【题目】对于函数
,若在定义域内存在实数x,满足
,则称
为“局部奇函数”。
为定义在
上的“局部奇函数”;q:曲线
与x轴交于不同的两点。
(1)当p为真时,求m的取值范围.
(2)若“
”为真命题,且“
”为假命题,求m的取值范围。
参考答案:
【答案】(1)
(2)![]()
【解析】
(1)根据“局部奇函数”的定义列方程,分离常数
后利用指数函数值域和对勾函数性质,求得
的取值范围.(2)先求得
真时
的取值范围.根据“
”为真命题,且“
”为假命题,可知“p真q假”或“p假q真”,由此列不等式组,解不等式组求得
的取值范围.
解:(1)
为定义在
上的“局部奇函数”;
,使得
成立
化为![]()
![]()
![]()
(2)q:曲线
与x轴交于不同的两点;
,解得
或![]()
由题知:“
”为真命题,且“
”为假命题,
则“p真q假”或“p假q真”.
即
或![]()
解得
或
或![]()
即m的取值范围是
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间
,需求量为100台;最低气温位于区间
,需求量为200台;最低气温位于区间
,需求量为300台。公司销售部为了确定11月份的订购计划,统计了前三年11月份各天的最低气温数据,得到下面的频数分布表:最低气温(℃)





天数
11
25
36
16
2
以最低气温位于各区间的频率代替最低气温位于该区间的概率.
求11月份这种电暖气每日需求量
(单位:台)的分布列;若公司销售部以每日销售利润
(单位:元)的数学期望为决策依据,计划11月份每日订购200台或250台,两者之中选其一,应选哪个? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,三棱柱
中,
,
平面
.
(1)证明:
;(2)若
,
,求二面角
的余弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
月收入(单位百元)






频数
5
10
15
10
5
5
赞成人数
4
8
12
5
2
1
(1)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“月收入以5500元为分界点对“楼市限购令”的态度有差异;
月收入不低于55百元的人数
月收入低于55百元的人数
合计
赞成
a=______________
c=______________
______________
不赞成
b=______________
d=______________
______________
合计
______________
______________
______________
(2)试求从年收入位于
(单位:百元)的区间段的被调查者中随机抽取2人,恰有1位是赞成者的概率。参考公式:
,其中
.参考值表:

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知倾斜角为
的直线经过抛物线
:
的焦点
,与抛物线
相交于
、
两点,且
.(Ⅰ)求抛物线
的方程;(Ⅱ)过点
的两条直线
、
分别交抛物线
于点
、
和
、
,线段
和
的中点分别为
、
.如果直线
与
的倾斜角互余,求证:直线
经过一定点. -
科目: 来源: 题型:
查看答案和解析>>【题目】为纪念重庆黑山谷晋升国家5A级景区五周年,特发行黑山谷纪念邮票,从2017年11月1日起开始上市.通过市场调查,得到该纪念邮票在一周内每1张的市场价y(单位:元)与上市时间x(单位:天)的数据如下:
上市时间x天
1
2
6
市场价y元
5
2
10
(Ⅰ)分析上表数据,说明黑山谷纪念邮票的市场价y(单位:元)与上市时间x(单位:天)的变化关系,并判断y与x满足下列哪种函数关系,①一次函数;②二次函数;③对数函数,并求出函数的解析式;
(Ⅱ)利用你选取的函数,求黑山谷纪念邮票市场价最低时的上市天数及最低的价格.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某厂推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20000元,每生产一件“玉兔”需要增加投入100元,根据统计数据,总收益P(单位:元)与月产量x(单位:件)满足
(注:总收益=总成本+利润)(1)请将利润y(单位:元)表示成关于月产量x(单位:件)的函数;
(2)当月产量为多少时,利润最大?最大利润是多少?
相关试题