【题目】某中学刚搬迁到新校区,学校考虑,若非住校生上学路上单程所需时间人均超过20分钟,则学校推迟5分钟上课.为此,校方随机抽取100个非住校生,调查其上学路上单程所需时间(单位:分钟),根据所得数据绘制成如下频率分布直方图,其中时间分组为[0,10),[10,20),[20,30),[30,40),[40,50]. ![]()
(1)求频率分布直方图中a的值;
(2)从统计学的角度说明学校是否需要推迟5分钟上课;
(3)若从样本单程时间不小于30分钟的学生中,随机抽取2人,求恰有一个学生的单程时间落在[40,50]上的概率.
参考答案:
【答案】
(1)解:时间分组为[0,10)的频率为
1﹣10(0.06+0.02+0,003+0.002)=0.15,
∴a=
=0.015,
所以所求的频率直方图中a的值为0.015.
(2)解:100个非住校生上学路上单程所需时间的平均数:
=0.15×5+0.6×15+0.2×25+0.03×35+0.02×45=16.7,
因为16.7<20,
所以该校不需要推迟5分钟上课.
(3)解:依题意满足条件的单程所需时间在[30,40)中的有3人,不妨设为a,b,c,
单程所需时间在[40,50)中的有2人,不妨设为A,B,
从单程所需时间不小于30分钟的5名学生中,随机抽取2人共有以下10种情况:
(a,b),(a,c),(a,A),(a,B),(b,c),(b,A),(b,B),(c,A),(c,B),(A,B)其中恰有一个学生的单程所需时间落在[40,50]中的有以下6种:
(a,A),(a,B),(b,A),(b,B),(c,A),(c,B),
故恰有一个学生的单程所需时间落在[40,50]中的概率P=
= ![]()
【解析】(Ⅰ)根据频率分布直方图矩形面积之和为1,可求出直方图中的a的值;(Ⅱ)先求出上学所需时间的平均值,再与20比较即可得到答案;(Ⅲ)根据分层抽样确定[30,40)和[40,50)抽取的人数,列举任意抽取两人的基本事件,找出恰有一个学生的单程时间落在[40,50]上事件包含的基本事件,利用概率公式计算即可.
【考点精析】利用频率分布直方图对题目进行判断即可得到答案,需要熟知频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测.
车间
A
B
C
数量
50
150
100
(1)求这6件样品中来自A、B、C各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】有两个袋子,其中甲袋中装有编号分别为1、2、3、4的4个完全相同的球,乙袋中装有编号分别为2、4、6的3个完全相同的球.
(Ⅰ)从甲、乙袋子中各取一个球,求两球编号之和小于8的概率;
(Ⅱ)从甲袋中取2个球,从乙袋中取一个球,求所取出的3个球中含有编号为2的球的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在多面体
中,
与
均为边长为2的正方形,
为等腰直角三角形,
,且平面
平面
,平面
平面
.(Ⅰ)求证:平面
平面
;(Ⅱ)求平面
与平面
所成锐二面角的余弦值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲乙两人进行乒乓球决赛,比赛采取七局四胜制.现在的情形是甲胜3局,乙胜2局.若两人胜每局的概率相同,则甲获得冠军的概率为( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】选修4-4:坐标系与参数方程
已知曲线
的参数方程为
(
为参数),以坐标原点
为极点,以
轴的正半轴为极轴建立极坐标系,已知直线
的极坐标方程为
,
.(Ⅰ)若直线
与曲线
交于不同的两点
,
,当
时,求
的值;(Ⅱ)当
时,求曲线
关于直线
对称的曲线方程. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<
)在一个周期内的图像如图所示,其中M(
,2),N(
,0). 
(1)求函数f(x)的解析式;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且a=
,c=3,f(
)=
,求△ABC的面积.
相关试题