【题目】有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(1)将红色卡片和蓝色卡片分别放在两个袋中,然后从两个袋中各取一张卡片,求两张卡片数字之积为偶数的概率
(2)将五张卡片放在一个袋子中,从中任取两张,求两张卡片颜色不同的概率
参考答案:
【答案】(1)
(2)![]()
【解析】
古典概型的概率等于满足事件A的基本事件的个数与基本事件总数之比,解决此类题目,一般用列举法.
(1)将红色卡片和蓝色卡片分别放在两个袋中,然后从两个袋中各取一张卡片的所有可能情况有如下6种:红1蓝1,红1蓝2,红2蓝1,红2蓝2,红3蓝1,红3蓝2.
其中两张卡片数字之积为偶数有4种:红1蓝2,红2蓝1,红2蓝2,红3蓝2.
故所求的概率为
.
(2)将五张卡片放在一个袋子中,从中任取两张的所有情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.
其中两张卡片颜色不同的情况有6种:红1蓝1,红1蓝2,红2蓝1,红2蓝2,红3蓝1,红3蓝2.故所求的概率为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
经过点
,且离心率为
.(1)求椭圆
的方程;(2)若点
、
在椭圆
上,且四边形
是矩形,求矩形
的面积
的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.
若
在其定义域上单调递减,求
的取值范围;
若
存在两个不同极值点
与
,且
,求证
. -
科目: 来源: 题型:
查看答案和解析>>【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系
中,直线
的参数方程为
(
为参数,
),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.(Ⅰ)若
,求直线
的普通方程及曲线
的直角坐标方程;(Ⅱ)若直线
与曲线
有两个不同的交点,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】某公司推出一新款手机,因其功能强大,外观新潮,一上市便受到消费者争相抢购,销量呈上升趋势.散点图是该款手机上市后前6周的销售数据.

(Ⅰ)根据散点图,用最小二乘法求
关于
的线性回归方程,并预测该款手机第8周的销量;(Ⅱ)为了分析市场趋势,该公司市场部从前6周的销售数据中随机抽取2周的数据,求抽到的这2周的销量均在20万台以下的概率.
参考公式:回归直线方程
,其中:
,
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
是圆的直径,
垂直圆所在的平面,
是圆上的一点. 
(1)求证:平面
平面
;(2)若
,求直线
与平面
所成角的正弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,
.(Ⅰ)当
时,求
的图象在点
处的切线方程;(Ⅱ)设函数
,讨论函数
的零点个数.
相关试题