【题目】如图,已知在四棱锥P﹣ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,PA=
,AB=1.AD=2.∠BAD=120°,E,F,G,H分别是BC,PB,PC,AD的中点.
(Ⅰ)求证:PH∥平面GED;
(Ⅱ)过点F作平面α,使ED∥平面α,当平面α⊥平面EDG时,设PA与平面α交于点Q,求PQ的长.![]()
参考答案:
【答案】证明:(Ⅰ)连接HC,交ED于点N,连接GN,
∵DHEC是平行四边形,∴N是线段HC的中点,又G是PC的中点,
∴GN∥PH,
又∵GN平面GED,PH平面GED,
∴PH∥平面GED.
(Ⅱ) 方法1:连接AE,∵∠BAD=120°,∴△ABE是等边三角形,
设BE的中点为M,以AM、AD、AP分别为x,y,z轴建立空间直角坐标系.
则B(
,
,0),C(
,
,0),D(0,2,0),P(0,0,
),
则E(
,
,0),F(
,
,
),G(
,
,
).
设Q(0,0,t),
,
.
设
是平面GED的一个法向量,
则
,得
,
令y1=1∴
.
设
是平面α的一个法向量,
则
,得
,令y2=1,得
,
当平面GED⊥平面α时,
,
得
,则PQ的长为
.
方法2:连接BH,则BH∥ED,又∵PB∥GE,∴平面PBH∥平面GED,
设BH与AE交于点K,PK的中点为M,
∵F是PB的中点,∴FM∥BK,
∵ABEH是菱形,∴AE⊥BK,
∵PA⊥平面ABCD,∴PA⊥BK,∴BK⊥平面PAK.
∴FM⊥平面PAK,
过M作MQ⊥PK,交PA于Q,设MQ与FM所确定的平面为α,
∵ED∥BH∥FM,∴ED∥平面α,又平面α⊥平面PBH,∴平面α⊥平面EDG.
得平面α满足条件.
∵
,
,∴
,
由
,
得
.![]()
![]()
![]()
【解析】(I)连接HC,交ED于点N,连接GN.由平行四边形的性质和三角形的中位线定理即可得到GN∥PH,再利用线面平行的判定定理即可证明;(II)方法一:通过建立空间直角坐标系,利用平面GED⊥平面α两个平面的法向量
,求得Q的坐标,进而取得|PQ|的长.方法二:连接BH,则BH∥ED,及PB∥GE,可得平面PBH∥平面GED;利用三角形懂得中位线定理可得FM∥BK;利用菱形的性质可得AE⊥BK,再利用线面垂直的判定和性质定理可得BK⊥平面PAK,FM⊥平面PAK;过M作MQ⊥PK,交PA于Q,设MQ与FM所确定的平面为α,可得ED∥BH∥FM,ED∥平面α,又平面α⊥平面PBH,可得平面α⊥平面EDG.得平面α满足条件.利用已知可得PA、AK、PK,再利用
,即可得到PQ.
【考点精析】利用直线与平面平行的判定对题目进行判断即可得到答案,需要熟知平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
AA1 , D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
有极值,且导函数
的极值点是
的零点。(极值点是指函数取极值时对应的自变量的值)求b关于a的函数关系式,并写出定义域;
证明:b>3a;
若
,
这两个函数的所有极值之和不小于
,求a的取值范围。 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,平面四边形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AD⊥ED,AF∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.
(Ⅰ)若四点F、B、C、E共面,AB=a,求x的值;
(Ⅱ)求证:平面CBE⊥平面EDB;
(Ⅲ)当x=2时,求二面角F﹣EB﹣C的大小.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设f(x)是定义在R 且周期为1的函数,在区间
上,
其中集合D=
,则方程f(x)-lgx=0的解的个数是____________ -
科目: 来源: 题型:
查看答案和解析>>【题目】对于给定的正整数k,若数列{an}满足

=2kan对任意正整数n(n> k) 总成立,则称数列{an} 是“P(k)数列”.
(1)证明:等差数列{an}是“P(3)数列”;
若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.
-
科目: 来源: 题型:
查看答案和解析>>【题目】[选修4-4:坐标系与参数方程]在平面坐标系中xOy中,已知直线l的参考方程为
(t为参数),曲线C的参数方程为
(s为参数)。设p为曲线C上的动点,求点P到直线l的距离的最小值
相关试题