【题目】【2017福建三明5月质检】已知函数
,
.
(Ⅰ)当
时,求证:过点
有三条直线与曲线
相切;
(Ⅱ)当
时,
,求实数
的取值范围.
参考答案:
【答案】(I)详见解析;(II)
.
【解析】
解法一:(Ⅰ)当
时,
,
![]()
设直线与曲线
相切,其切点为
,
则曲线
在点
处的切线方程为:
,
因为切线过点
,所以
,
即
,
∵
,∴
,
设
,
∵
,
,
, ![]()
∴
在三个区间
上至少各有一个根
又因为一元三次方程至多有三个根,所以方程
恰有三个根,
故过点
有三条直线与曲线
相切.
(Ⅱ)∵当
时,
,即当
时, ![]()
∴当
时,
,
设
,则
,
设
,则
.
(1)当
时,∵
,∴
,从而
(当且仅当
时,等号成立)
∴
在
上单调递增,
又∵
,∴当
时,
,从而当
时,
,
∴
在
上单调递减,又∵
,
从而当
时,
,即![]()
于是当
时,
.
(2)当
时,令
,得
,∴
,
故当
时,
,
∴
在
上单调递减,
又∵
,∴当
时,
,
从而当
时,
,
∴
在
上单调递增,又∵
,
从而当
时,
,即![]()
于是当
时,
,
综合得
的取值范围为
.
解法二:(Ⅰ)当
时,
,
,
设直线与曲线
相切,其切点为
,
则曲线
在点
处的切线方程为
,
因为切线过点
,所以
,
即
,
∵
,∴![]()
设
,则
,令
得![]()
当
变化时,
,
变化情况如下表:
|
|
|
|
|
|
| + | 0 | - | 0 | + |
| ↗ | 极大值
| ↘ | 极小值 | ↗ |
∴
恰有三个根,
故过点
有三条直线与曲线
相切.
(Ⅱ)同解法一.
-
科目: 来源: 题型:
查看答案和解析>>【题目】Sn为数列的前n项和,已知an>0,an2+2an=4Sn﹣1.
(1)求{an}的通项公式;
(2)求{an}的前n项和Sn . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数列{an}的前n项和为Sn , 且Sn=
+
.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=an+2﹣an+
,且数列{bn}的前n项和为Tn , 求证:Tn<2n+
. -
科目: 来源: 题型:
查看答案和解析>>【题目】【2017河北唐山三模】已知函数
,
.(1)讨论函数
的单调性;(2)若函数
在区间
有唯一零点
,证明:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知bcos2
+acos2
=
c.
(Ⅰ)求证:a,c,b成等差数列;
(Ⅱ)若C=
,△ABC的面积为2
,求c. -
科目: 来源: 题型:
查看答案和解析>>【题目】在正方体ABCD﹣A1B1C1D1中,点M是AB的中点,则直线DB1与MC所成角的余弦值为( )
A.﹣
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】双曲线
=1(a>0,b>0)的左右焦点分别为F1 , F2渐近线分别为l1 , l2 , 位于第一象限的点P在l1上,若l2⊥PF1 , l2∥PF2 , 则双曲线的离心率是( )
A.
B.
C.2
D.
相关试题