【题目】将A、B两枚骰子各抛掷一次,观察向上的点数,问:
(1)共有多少种不同的结果?
(2)两枚骰子点数之和是3的倍数的结果有多少种?
(3)两枚骰子点数之和是3的倍数的概率为多少?
参考答案:
【答案】
(1)解:第一枚有6种结果,
第二枚有6种结果,由分步计数原理知共有6×6=36种结果
(2)解:可以列举出两枚骰子点数之和是3的倍数的结果(1,2)(1,5)(2,1)(2,4)(3,3)(3,6)(4,2)(4,5)(5,1)(5,4)(6,3)(6,6)共有12种结果.
(3)解:本题是一个古典概型
由上两问知试验发生包含的事件数是36,
满足条件的事件数是12,
∴根据古典概型概率公式得到P=
= ![]()
【解析】(1)已知第一枚由6种结果,第二枚有6种结果,根据分步计数乘法原理,把两次的结果数相乘,得到共有的结果数.(2)比值两个有序数对中第一个数字作为第一枚的结果,把第二个数字作为第二枚的结果,列举出所有满足题意的结果.(3)本题是一个古典概型由上两问知试验发生包含的事件数是36,满足条件的事件数是12,根据古典概型的概率公式,做出要求的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线l过点P(3,6)且与x,y轴的正半轴分别交于A、B两点,O是坐标原点,则当|OA|+|OB|取得最小值时的直线方程是(用一般式表示)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知位置向量
=(log2(m2+3m﹣8),log2(2m﹣2)),
=(1,0),若以OA、OB为邻边的平行四边形OACB的顶点C在函数y=
x的图象上,则实数m= . -
科目: 来源: 题型:
查看答案和解析>>【题目】袋中有红色、白色球各一个,每次任取一个,有放回地抽三次,计算下列事件的概率:
(1)三次颜色恰有两次同色;
(2)三次颜色全相同;
(3)三次抽取的球中红色球出现的次数多于白色球出现的次数. -
科目: 来源: 题型:
查看答案和解析>>【题目】某人射击一次命中7~10环的概率如下表
命中环数
7
8
9
10
命中概率
0.16
0.19
0.28
0.24
计算这名射手在一次 射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率;
(3)射中环数不足8环的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了了解初三女生身高情况,某中学对初三女生身高情况进行了一次测量,所得数据整理后列出了频率分布表如下:
组 别
频数
频率
145.5~149.5
1
0.02
149.5~153.5
4
0.08
153.5~157.5
20
0.40
157.5~161.5
15
0.30
161.5~165.5
8
0.16
165.5~169.5
m
n
合 计
M
N
(1)求出表中m,n,M,N所表示的数分别是多少?
(2)画出频率分布直方图;
(3)全体女生中身高在哪组范围内的人数最多? -
科目: 来源: 题型:
查看答案和解析>>【题目】为了估计某人的射击技术情况,在他的训练记录中抽取50次检验,他的命中环数如下:10,5,5,8,7,8,6,9,7,8,6,6,5,6,7,8,10,9,7,9,8,7,6,5,9,9,8,8,5,8,6,7,6,9,6,8,8,8,6,7,6,8,107,10,8,7,7,9,5
(1)列出频率分布表
(2)画出频率分布的直方图.
相关试题