【题目】已知函数
,函数
有四个不同的零点,从小到大依次为
,
,
,
,则
的取值范围为( )
A.
B.
C.
D. ![]()
参考答案:
【答案】B
【解析】分析:通过f(x)的单调性,画出f(x)的图象和直线y=a,考虑四个交点的情况,得到x1=-2-x2,-1<x2≤0,x3x4=4,再由二次函数的单调性,可得所求范围.
详解:当x>0时,f(x)=
,
可得f(x)在x>2递增,在0<x<2处递减,
由f(x)=e(x+1)2,x≤0,
x<-1时,f(x)递减;-1<x<0时,f(x)递增,
可得x=-1处取得极小值1,
作出f(x)的图象,以及直线y=a,
可得e(x1+1)2=e(x2+1)2=
,
即有x1+1+x2+1=0,可得x1=-2-x2,-1<x2≤0,
![]()
可得x3x4=4,
x1x2+x3x4=4-2x2-x22=-(x2+1)2+5,在-1<x2≤0递减,
可得所求范围为[4,5).
故选B.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】 已知函数f(x)=ax3+bx2的图象经过点M(1,4),曲线在点M处的切线恰好与直线x+9y﹣3=0垂直.
(1)求实数a、b的值
(2)若函数f(x)在区间[m,m+1]上单调递增,求m的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知四边形BCDE为直角梯形,
,
,且
,A为BE的中点
将
沿AD折到
位置
如图
,连结PC,PB构成一个四棱锥
.
Ⅰ
求证
;
Ⅱ
若
平面ABCD.
求二面角
的大小;
在棱PC上存在点M,满足
,使得直线AM与平面PBC所成的角为
,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的个数有( )
①用
刻画回归效果,当
越大时,模型的拟合效果越差;反之,则越好;②命题“
,
”的否定是“
,
”;③若回归直线的斜率估计值是
,样本点的中心为
,则回归直线方程是
;④综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”。
A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.

(1)求证:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求证:二面角C﹣PB﹣A的余弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(1)求张同学至少取到1道乙类题的概率;
(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是
,答对每道乙类题的概率都是
,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0 , y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣
时,切线MA的斜率为﹣
. 
(1)求P的值;
(2)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).
相关试题