【题目】某几何体的主视图和左视图如图(1),它的俯视图的直观图是矩形O1A1B1C1如图(2),其中O1A1=6,O1C1=2,则该几何体的侧面积为( )![]()
A.48
B.64
C.96
D.128
参考答案:
【答案】C
【解析】解:由已知中的三视图可得该几何体是一个四棱柱,
∵它的俯视图的直观图是矩形O1A1B1C1 , O1A1=6,O1C1=2,
∴它的俯视图的直观图面积为12,
∴它的俯视图的面积为:24
,
∴它的俯视图
的俯视图是边长为:6的菱形,
棱柱的高为4
故该几何体的侧面积为:4×6×4=96,
故选:C.
【考点精析】解答此题的关键在于理解由三视图求面积、体积的相关知识,掌握求体积的关键是求出底面积和高;求全面积的关键是求出各个侧面的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有甲、乙两个班进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下
列联表:(单位:人). 
已知在全部105人中随机抽取1人成绩是优秀的概率为
.(1)请完成上面的
列联表,并根据表中数据判断,是否有
的把握认为“成绩与班级有关系”?(2)若甲班优秀学生中有男生6名,女生4名,现从中随机选派3名学生参加全市数学竞赛,记参加竞赛的男生人数为
,求
的分布列与期望.附:


0.15
0.10
0.050
0.010

2.072
2.706
3.841
6.635
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=xm﹣
,且f(3)=
.
(1)求函数f(x)的解析式,并判断函数f(x)的奇偶性.
(2)证明函数f(x)在(0,+∞)上的单调性. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=(
)x , 其反函数为y=g(x).
(1)若g(mx2+2x+1)的定义域为R,求实数m的取值范围;
(2)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a);
(3)是否存在实数m>n>3,使得函数y=h(x)的定义域为[n,m],值域为[n2 , m2],若存在,求出m、n的值;若不存在,则说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】直线l交椭圆4x2+5y2=80于M、N两点,椭圆的上顶点为B点,若△BMN的重心恰好落在椭圆的右焦点上,则直线l的方程是( )
A.5x+6y﹣28=0
B.5x﹣6y﹣28=0
C.6x+5y﹣28=0
D.6x﹣5y﹣28=0 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=(ex+1)(ax+2a﹣2),若存在x∈(0,+∞),使得不等式f(x)﹣2<0成立,则实数a的取值范围是( )
A.(0,1)
B.(0,
)
C.(﹣∞,1)
D.(﹣∞,
) -
科目: 来源: 题型:
查看答案和解析>>【题目】某企业生产A,B两种产品,根据市场调查与市场预测,A产品的利润与投资成正比,其关系如图(1);B产品的利润与投资的算术平方根成正比,其关系如图(2)(注:所示图中的横坐标表示投资金额,单位为万元)

(1)分别求出A,B两种产品的利润表示为投资的函数关系式;
(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润是多少?
相关试题