【题目】记
分别为函数
的导函数.若存在
,满足
且
,则称
为函数
与
的一个“S点”.
(1)证明:函数
与
不存在“S点”;
(2)若函数
与
存在“S点”,求实数a的值;
(3)已知函数
,
.对任意
,判断是否存在
,使函数
与
在区间
内存在“S点”,并说明理由.
参考答案:
【答案】(1)证明见解析
(2)a的值为![]()
(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.
【解析】分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合 “S点”的定义列两个方程,再判断方程组是否有解即可证得结论.
详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.
由f(x)=g(x)且f′(x)= g′(x),得
,此方程组无解,
因此,f(x)与g(x)不存在“S”点.
(2)函数
,
,
则
.
设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得
,即
,(*)
得
,即
,则
.
当
时,
满足方程组(*),即
为f(x)与g(x)的“S”点.
因此,a的值为
.
(3)对任意a>0,设
.
因为
,且h(x)的图象是不间断的,
所以存在
∈(0,1),使得
,令
,则b>0.
函数
,
则
.
由f(x)与g(x)且f′(x)与g′(x),得
,即
(**)
此时,
满足方程组(**),即
是函数f(x)与g(x)在区间(0,1)内的一个“S点”.
因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥
中,底面
是平行四边形,
平面
,
,
,
是棱
上的一点.(1)证明:
平面
; (2)若
平面
,求
的值;(3)在(2)的条件下,三棱锥
的体积是18,求
点到平面
的距离.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某生物研究者于元旦在湖中放入一些凤眼莲,这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲覆盖面积为
,三月底测得凤眼莲覆盖面积为
,凤眼莲覆盖面积
(单位:
)与月份
(单位:月)的关系有两个函数模型
与
可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;
(2)求凤眼莲覆盖面积是元旦放入面积
倍以上的最小月份.(参考数据
,
) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知定义在
上的奇函数
满足
,
为数列
的前
项和,且
,则
__________. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系
中,曲线
过点
,其参数方程为
(
为参数,
),以坐标原点为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.(1)写出曲线
的普通方程和曲线
的直角坐标方程;(2)已知曲线
和曲线
交于
两点(
在
之间),且
,求实数
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(1)讨论函数
的单调性;(2)若
且
,求证:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如表所示:
组别
候车时间
人数
一

2
二

6
三

4
四

2
五

1
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自同一组的概率.
相关试题