【题目】.(本小题满分12分)
如图,四棱锥P—ABCD中,底面ABCD是边长为
的正方形E,F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=
AD.
(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积.
![]()
参考答案:
【答案】解:(Ⅰ)证明:连接AC,则F是AC的中点,
E为PC的中点,故在
CPA中,EF//PA,
且PA
平面PAD,EF
平面PAD,∴EF//平面PAD
(Ⅱ)取AD的中点M,连接PM,∵PA=PD,∴PM⊥AD,又平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,∴PM⊥平面ABCD.
在直角
PAM中,求得PM=
,∴![]()
PM=![]()
【解析】试题分析:解:(Ⅰ)证明:连接AC,则F是AC的中点,
E为PC的中点,故在
CPA中,EF//PA,
且PA
平面PAD,EF
平面PAD,∴EF//平面PAD
(Ⅱ)取AD的中点M,连接PM,∵PA=PD,∴PM⊥AD,又平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,∴PM⊥平面ABCD.
在直角
PAM中,求得PM=
,∴
PM=![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
且
(1)讨论
的单调区间;(2)若直线
的图象恒在函数
图象的上方,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆C:
+
=1(a>b>0)的离心率为
,且过点(1,
).(I)求椭圆C的方程;
(Ⅱ)设与圆O:x2+y2=
相切的直线l交椭圆C与A,B两点,求△OAB面积的最大值,及取得最大值时直线l的方程. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆C的两个焦点是F1(﹣2,0),F2(2,0),且椭圆C经过点A(0,
).(1)求椭圆C的标准方程;
(2)若过椭圆C的左焦点F1(﹣2,0)且斜率为1的直线l与椭圆C交于P、Q两点,求线段PQ的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点
是拋物线
的焦点, 若点
在
上,且
.(1)求
的值;(2)若直线
经过点
且与
交于
(异于
)两点, 证明: 直线
与直线
的斜率之积为常数. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的方程2x2﹣(
+1)x+m=0的两根为sinθ和cosθ,θ∈(0,π).求:
(1)m的值;
(2)
+
的值;
(3)方程的两根及此时θ的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成
小块地,在总共
小块地中,随机选
小块地种植品种甲,另外
小块地种植品种乙.(1)假设
,求第一大块地都种植品种甲的概率;(2)试验时每大块地分成
小块,即
,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm2)如下表:甲








乙








分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
相关试题