【题目】为了完成对某城市的工薪阶层是否赞成调整个人所得税税率的调查,随机抽取了60人,作出了他们的月收入频率分布直方图(如图),同时得到了他们月收入情况与赞成人数统计表(如下表):
![]()
(1)试根据频率分布直方图估计这60人的平均月收入;
(2)若从月收入(单位:百元)在[65,75)的被调查者中随机选取2人进行追踪调查,求2人都不赞成的概率.
参考答案:
【答案】(1)这60人的平均月收入约为43.5百元.(2)![]()
【解析】试题分析:(1)由频率分布直方图中每组中横轴数据的中间值与纵轴数据乘积的和来估计所有数据的平均值;(2)由频率分布直方图和表格可知[65,75)共有
人,其中
人赞成,
人不赞成,可写出任取
人的所有情况,找出其中
人都不赞成的情况,利用古典概型可得结果.
试题解析:(1)由直方图知:
![]()
这60人的平均月收入约为43.5百元.
(2)根据频率分布直方图和统计图表可知
[65,75)的人数为0.01×10×60=6人,其中2人赞成,4人不赞成
记赞成的人为x,y,不赞成的人为a,b,c,d
任取2人的情况分别是:xy,xa,xb,xc,xd,ya,yb,yc,yd,ab,ac,ad,bc,bd,cd共15种情况
其中2人都不赞成的是:ab,ac,ad,bc,bd,cd共6种情况
∴2人都不赞成的概率是:P=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知x0,x0+
是函数f(x)=cos2(wx﹣
)﹣sin2wx(ω>0)的两个相邻的零点(1)求
的值;(2)若对任意
,都有f(x)﹣m≤0,求实数m的取值范围.(3)若关于
的方程
在
上有两个不同的解,求实数
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知某运动员每次投篮命中的概率低于
,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一个水轮的半径为4m,水轮圆心O距离水面2m,已知水轮每分钟转动5圈,如果当水轮上点P从水中浮现时(图中点p0)开始计算时间.
(1)将点p距离水面的高度z(m)表示为时间t(s)的函数;
(2)点p第一次到达最高点大约需要多少时间?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆C的两个焦点分别为
,且椭圆C过点P(3,2).(Ⅰ)求椭圆C的标准方程;
(Ⅱ)与直线OP平行的直线交椭圆C于A,B两点,求△PAB面积的最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线
的焦点为
,抛物线上横坐标为
的点到抛物线顶点的距离与该点到抛物线准线的距离相等。(1)求抛物线
的方程;(2)设直线
与抛物线
交于
两点,若
,求实数
的值。 -
科目: 来源: 题型:
查看答案和解析>>【题目】某研究小组在电脑上进行人工降雨模拟实验,准备用
、
、
三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如表:方式
实施地点
大雨
中雨
小雨
模拟实验总次数

甲
4次
6次
2次
12次

乙
3次
6次
3次
12次

丙
2次
2次
8次
12次
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:
(Ⅰ)求甲、乙、丙三地都恰为中雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量
,求随机变量
的分布列和数学期望
.
相关试题