【题目】某校高一学生共有500人,为了了解学生的历史学习情况,随机抽取了50名学生,对他们一年来4次考试的历史平均成绩进行统计,得到频率分布直方图如图所示,后三组频数成等比数列.
(1)求第五、六组的频数,补全频率分布直方图;
(2)若每组数据用该组区间中点值(例如区间[70,80)的中点值是
75作为代表,试估计该校高一学生历史成绩的平均分;
(3)估计该校高一学生历史成绩在70~100分范围内的人数.![]()
参考答案:
【答案】解:(1)设第五、六组的频数分别为x,y
由题设得,
第四组的频数是0.024×10×50=12
则x2=12y
又x+y=50﹣(0.012+0.016+0.03+0.024)×10×50即x+y=9
∴x=6,
y=3
补全频率分布直方图
(2)该校高一学生历史成绩的平均分
=(45x0.012+55x0.016+65x0.03+75x0.024+95x0.006)=67.6
(3)该校高一学生历史成绩在70~100分范围内的人数:
500×(0.024+0.012+0.006)×10=210![]()
【解析】(1)利用频率分布直方图中利用纵坐标乘以组距求出第四组的频率,利用频率乘以样本容量求出频数,利用等比数列的中项列出方程求出第五、六组的频数.
(2)利用各个小矩形的中点乘以各个矩形的面积求出高一学生历史成绩在70~100分范围内的人数.
【考点精析】解答此题的关键在于理解用样本的数字特征估计总体的数字特征的相关知识,掌握用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差.在随机抽样中,这种偏差是不可避免的.
-
科目: 来源: 题型:
查看答案和解析>>【题目】集合P={x|a+1≤x≤2a+1},Q={x|﹣2≤x≤5}
(1)若a=3,求集合(RP)∩Q;
(2)若PQ,求实数a的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】(选修4—4;坐标系与参数方程)已知曲线
的极坐标方程是
,曲线
经过平移变换
得到曲线
;以极点为原点,极轴为
轴正方向建立平面直角坐标系,直线l的参数方程是
(
为参数).(1)求曲线
,
的直角坐标方程;(2)设直线l与曲线
交于
、
两点,点
的直角坐标为(2,1),若
,求直线l的普通方程. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为3万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)=
,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);
(2)甲厂生产多少台新产品时,可使盈利最多? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=|x﹣1|+|x+1|(x∈R)
(1)证明:函数f(x)是偶函数;
(2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图象,并写出函数的值域;
(3)在同一坐标系中画出直线y=x+2,观察图象写出不等式f(x)>x+2的解集.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量,分别记录抽查数据如下:
甲
102
101
99
98
103
98
99
乙
110
115
90
85
75
115
110
(1)这种抽样方法是哪一种?
(2)将两组数据用茎叶图表示.
(3)将两组数据进行比较,说明哪个车间产品较稳定. -
科目: 来源: 题型:
查看答案和解析>>【题目】某试验田分别种植了甲乙两种水稻,为了研究这两种水稻的产量,抽检了甲、乙两种水稻的谷穗各1000株.经统计,得到每株谷穗的粒数的频率分布直方图如图:

(Ⅰ)求乙种水稻谷穗的粒数落在[325,375)之间的频率,并将频率分布直方图补齐;
(Ⅱ)试根据频率分布直方图估计甲种水稻谷穗粒数的中位数与平均数(精确到0.1);
(Ⅲ)根据频率分布直方图,请至少从两方面对甲乙两种水稻谷穗的粒数作出评价.
相关试题