【题目】函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数,例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2(x∈R)是单函数;
②函数f(x)=
是单函数;
③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
④在定义域上具有单调性的函数一定是单函数.
其中的真命题是________.(写出所有真命题的序号)
参考答案:
【答案】②③④
【解析】
函数
不是单函数,例如
,显然不会有
和
相等,故为假命题;
函数
是单函数,因为若
,可推出
,
即
,故为真命题;
若
为单函数,
,
且
,则
为真,可用反证法证明:假设
,则按定义应有
,与已知
矛盾;
在定义域上具有单调性的函数一定是单函数为真,因为单函数的实质是一对一的映射,而单调的函数也是,故为真。
故答案为![]()
![]()
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,
.(Ⅰ)当a=2时,求(x)在x∈[1,e2]时的最值(参考数据:e2≈7.4);
(Ⅱ)若
,有f(x)+g(x)≤0恒成立,求实数a的值; -
科目: 来源: 题型:
查看答案和解析>>【题目】某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.
(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;
(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为
,答对文科题的概率均为
,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分
的分布列与数学期望
. -
科目: 来源: 题型:
查看答案和解析>>【题目】从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(1)求这500件产品质量指标值的样本平均数
和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数
,σ2近似为样本方差s2.(ⅰ)利用该正态分布,求P(187.8<Z<212.2);
(ⅱ)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用(ⅰ)的结果,求E(X).
附:
≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4. -
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系
中,曲线C的参数方程为
(其中
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系中,直线
的极坐标方程为
.(Ⅰ)求C的普通方程和直线
的倾斜角;(Ⅱ)设点
(0,2),
和
交于
两点,求
. -
科目: 来源: 题型:
查看答案和解析>>【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
过点
,其参数方程为
(
为参数,
),以
为极点,
轴非负半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.(1)求曲线
的普通方程和曲线
的直角坐标方程;(2)已知曲线
与曲线
交于
两点,且
,求实数
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】(本小题满分12分)
甲乙两个班级进行一门课程的考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下的列联表:
班级与成绩列联表
优 秀
不优秀
甲 班
10
35
乙 班
7
38
根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下认为成绩与班级有关系?
附:


0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024 6.635
7.879
10.828
相关试题