【题目】已知函数f(x)=
,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+
的取值范围是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
参考答案:
【答案】B
【解析】解:作函数f(x)=
,的图象如下, ![]()
由图可知,x1+x2=﹣2,x3x4=1;1<x4≤2;
故x3(x1+x2)+
=﹣
+x4 ,
其在1<x4≤2上是增函数,
故﹣2+1<﹣
+x4≤﹣1+2;
即﹣1<﹣
+x4≤1;
故选B.
作函数f(x)=
的图象如下,由图象可得x1+x2=﹣2,x3x4=1;1<x4≤2;从而化简x3(x1+x2)+
,利用函数的单调性求取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若f(x)是定义在R上的增函数,下列函数中
①y=[f(x)]2是增函数;
②y=
是减函数;
③y=﹣f(x)是减函数;
④y=|f(x)|是增函数;
其中正确的结论是( )
A.③
B.②③
C.②④
D.①③ -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,一根水平放置的长方体枕木的安全负荷与它的厚度d的平方和宽度a的乘积成正比,与它的长度l的平方成反比.

(1)在a>d>0的条件下,将此枕木翻转90°(即宽度变为了厚度),枕木的安全负荷会发生变化吗?变大还是变小?
(2)现有一根横截面为半圆(半圆的半径为R=
)的柱形木材,用它截取成横截面为长方形的枕木,其长度即为枕木规定的长度l,问横截面如何截取,可使安全负荷最大? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
:
经过点
,左右焦点分别为
、
,圆
与直线
相交所得弦长为2. (Ⅰ)求椭圆
的标准方程;(Ⅱ)设
是椭圆
上不在
轴上的一个动点,
为坐标原点,过点
作
的平行线交椭圆
于
、
两个不同的点.(1)试探究
的值是否为一个常数?若是,求出这个常数;若不是,请说明理由.(2)记
的面积为
,
的面积为
,令
,求
的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某公司的两个部门招聘工作人员,应聘者从 T1、T2两组试题中选择一组参加测试,成绩合格者可签约.甲、乙、丙、丁四人参加应聘考试,其中甲、乙两人选择使用试题 T1 , 且表示只要成绩合格就签约;丙、丁两人选择使用试题 T2 , 并约定:两人成绩都合格就一同签约,否则两人都不签约.已知甲、乙考试合格的概率都是
,丙、丁考试合格的概率都是
,且考试是否合格互不影响.
(1)求丙、丁未签约的概率;
(2)记签约人数为 X,求 X的分布列和数学期望EX. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示的多面体是由一个直平行六面体被平面
所截后得到的,其中
,
,
.
(Ⅰ)求证:
平面
;(Ⅱ)求直线
与平面
所成角的正弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】设函数f(x)=x2+bx﹣alnx.
(1)若x=2是函数f(x)的极值点,1和x0是函数f(x)的两个不同零点,且x0∈(n,n+1),n∈N,求n.
(2)若对任意b∈[﹣2,﹣1],都存在x∈(1,e)(e为自然对数的底数),使得f(x)<0成立,求实数a的取值范围.
相关试题