【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠ADC=120°,AB=2CD=2,平面D1DCC1垂直平面ABCD,D1C⊥AB,M是线段AB的中点.
(Ⅰ)求证:D1M∥面B1BCC1;
(Ⅱ)若DD1=2,求平面C1D1M和平面ABCD所成的锐角的余弦值.![]()
参考答案:
【答案】证明(Ⅰ)因为四边形ABCD是等腰梯形,且AB=2CD,所以AB∥DC.
又由M是AB的中点,因此CD∥MB且CD=MB.
在四棱柱ABCD﹣A1B1C1D1中,因为CD∥C1D1 , CD=C1D1 ,
可得C1D1∥MB,C1D1=MB,所以四边形BMD1C1为平行四边形,
因此D1M∥BC1 . 又D1M平面B1BCC1 , BC1平面B1BCC1 ,
所以D1M∥平面B1BCC1
(Ⅱ)解:方法一:如图(2),连接AC,MC.![]()
由(Ⅰ)知CD∥AM且CD=AM,
所以四边形AMCD为平行四边形,
可得BC=AD=MC,
由题意∠ABC=∠PAB=60°,
所以△MBC为正三角形,
因此AB=2BC=2,CA=
,
因此CA⊥CB.
又D1C⊥AB,CD∥AB,故D1C⊥CD,而平面D1DCC1垂直平面ABCD且交于CD,则D1C⊥平面ABCD
以C为坐标原点,建立如图(2)所示的空间直角坐标系C﹣xyz
由DD1=2得D1C=
,所以A(
,0,0),B(0,1,0),D1(0,0,
)
因此M
,所以
,
设平面C1D1M的一个法向量为
,
可得平面C1D1M的一个法向量 ![]()
又
为平面ABCD的一个法向量
因此 ![]()
所以平面C1D1M和平面ABCD所成的角(锐角)的余弦值为 ![]()
方法二:由(Ⅰ)知平面D1C1M∩平面ABCD=AB,过点C向AB引垂线交AB于点N,![]()
连接D1N,如图(3).
由D1C⊥AB,CD∥AB,故D1C⊥CD,
而平面D1DCC1垂直平面ABCD且交于CD,
则D1C⊥平面ABCD,
可得D1N⊥AB,
因此∠D1NC为二面角C1﹣AB﹣C的平面角
在Rt△BNC中,BC=1,∠NBC=60°,可得CN=
.
所以ND1=
=
.
在Rt△D1CN中,cos∠D1NC=
,
所以平面C1D1M和平面ABCD所成的角(锐角)的余弦值为 ![]()
【解析】(Ⅰ)证明AB∥DC.说明以四边形BMD1C1为平行四边形,推出D1M∥BC1 . 然后证明D1M∥平面B1BCC1(Ⅱ)方法一连接AC,MC.以C为坐标原点,建立空间直角坐标系C﹣xyz,求出相关的坐标,求出平面C1D1M的一个法向量,平面ABCD的一个法向量,利用空间向量的数量积求解二面角的平面角的余弦函数值.方法二:说明∠D1NC为二面角C1﹣AB﹣C的平面角,通过在Rt△D1CN中,求解即可.
【考点精析】本题主要考查了直线与平面平行的判定的相关知识点,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
,
,且
. (Ⅰ)试将y表示为x的函数f(x),并求f(x)的单调递增区间;
(Ⅱ)已知a、b、c分别为△ABC的三个内角A、B、C对应的边长,若
,且
,a+b=6,求△ABC的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】设
是定义域为
的函数
的导函数,
,
,则
的解集为( )A.
B. 
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解人们对城市治安状况的满意度,某部门对城市部分居民的“安全感”进行调查,在调查过程中让每个居民客观地对自己目前生活城市的安全感进行评分,并把所得分作为“安全感指数”,即用区间[0,100]内的一个数来表示,该数越接近100表示安全感越高.现随机对该地区的男、女居民各500人进行了调查,调查数据如表所示:
安全感指数
[0,20)
[20,40)
[40,60)
[60,80)
[80,100]
男居民人数
8
16
226
131
119
女居民人数
12
14
174
122
178
根据表格,解答下面的问题:
(Ⅰ)估算该地区居民安全感指数的平均值;
(Ⅱ)如果居民安全感指数不小于60,则认为其安全感好.为了进一步了解居民的安全感,调查组又在该地区随机抽取3对夫妻进行调查,用X表示他们之中安全感好的夫妻(夫妻二人都感到安全)的对数,求X的分布列及期望(以样本的频率作为总体的概率). -
科目: 来源: 题型:
查看答案和解析>>【题目】已知点F1(﹣1,0),F2(1,0),动点M到点F2的距离是
,线段MF1的中垂线交线段MF2于点P. (Ⅰ)当点M变化时,求动点P的轨迹G的方程;
(Ⅱ)过点F2且不与x轴重合的直线L与曲线G相交于A,B两点,过点B作x轴的平行线与直线x=2相交于点C,则直线AC是否恒过定点,若是请求出该定点,若不是请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数

(1)若函数
是偶函数,求实数
的取值范围;(2)若函数
且任意
都有
恒成立,求实数
的取值范围;(3)若
,求
在
上的最小值
。 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=lnx﹣
,g(x)=
﹣1. (Ⅰ)若a>0,试判断f(x)在定义域内的单调性;
(Ⅱ)若f(x)在[1,e]上的最小值为
,求a的值;
(Ⅲ)当a=0时,若x≥1时,恒有xf(x)≤λ[g(x)+x]成立,求λ的最小值.
相关试题