【题目】“五一”假期期间,某餐厅对选择
、
、
三种套餐的顾客进行优惠。对选择
、
套餐的顾客都优惠10元,对选择
套餐的顾客优惠20元。根据以往“五一”假期期间100名顾客对选择
、
、
三种套餐的情况得到下表:
选择套餐种类 |
|
|
|
选择每种套餐的人数 | 50 | 25 | 25 |
将频率视为概率.
(I)若有甲、乙、丙三位顾客选择某种套餐,求三位顾客选择的套餐至少有两样不同的概率;
(II)若用随机变量
表示两位顾客所得优惠金额的综合,求
的分布列和期望。
参考答案:
【答案】(1)
(2)分布列详见解析,![]()
【解析】【试题分析】(1)依据题设运用古典概型的计算公式及对立事件的概率公式求解;(2)先运用古典概型公式求出分布列,再运用数学期望的计算公式分析求解:
(I)由题意可知,顾客选择
、
、
三种套餐的概率分别为
,
,
,
甲、乙、丙三位顾客选择的套餐都同的概率为
,
三位顾客选择的套餐至少有两样不同的概率为
.
(II)由题意知两位顾客获得优惠金额
的可能取值为20,30,40.
,
,
,
综上可得
的分布列为:
![]()
的数学期望
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=﹣
+bx+c与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0).
(1)求抛物线的解析式;
(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;
(3)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断( )
①年用水量不超过180m3的该市居民家庭按第一档水价交费;
②年用水量超过240m3的该市居民家庭按第三档水价交费;
③该市居民家庭年用水量的中位数在150﹣180之间;
④该市居民家庭年用水量的平均数不超过180.
A.①③
B.①④
C.②③
D.②④ -
科目: 来源: 题型:
查看答案和解析>>【题目】小丽今天晚自习准备复习历史、地理或政治中的一科,她用数学游戏的结果来决定选哪一科,游戏规则是:在平面直角坐标系中,以原点
为起点,再分别以
,
,
,
,
这5个点为终点,得到5个向量,任取其中两个向量,计算这两个向量的数量积
,若
,就复习历史,若
,就复习地理,若
,就复习政治.(1)写出
的所有可能取值;(2)求小丽复习历史的概率和复习地理的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:
移植的棵数n
1000
1500
2500
4000
8000
15000
20000
30000
成活的棵数m
865
1356
2220
3500
7056
13170
17580
26430
成活的频率

0.865
0.904
0.888
0.875
0.882
0.878
0.879
0.881
估计该种幼树在此条件下移植成活的概率为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是圆O的直径,点C在圆O上,矩形DCBE所在的平面垂直于圆O所在的平面,
,
.(1)若
,求三棱锥
的体积;(2)证明:平面ACD⊥平面BCDE;

-
科目: 来源: 题型:
查看答案和解析>>【题目】百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为.
.
相关试题