【题目】在平面直角坐标系
中,
分别为椭圆
:
的左、右焦点,
为短轴的一个端点,
是椭圆
上的一点,满足
,且
的周长为
.
(1)求椭圆
的方程;
(2)设点
是线段
上的一点,过点
且与
轴不垂直的直线
交椭圆
于
两点,若
是以
为顶点的等腰三角形,求点
到直线
距离的取值范围.
参考答案:
【答案】(1)
(2)![]()
【解析】试题分析:(1)由已知
,设
,则
,
,
,由此能求出椭圆
的方程;(2)设点
,(
),直线
的方程为
,k≠0,由
,得:
,由此利用韦达定理、中点坐标公式、点到直线的距离公式,结合已知条件能求出点
到直线距离的取值范围.
试题解析:(1)由已知
,设
,即![]()
∴
即
∴
得:
①
又
的周长为
∴
②
又①②得:
∴
∴所求椭圆
的方程为:
(2)设点
,直线
的方程为![]()
由
消去
,得:
设
,
中点为
则
∴![]()
∴
即
∵
是以
为顶点的等腰三角形 ∴
即
∴
设点
到直线
距离为
,
则
∴![]()
即点
到直线距离的取值范围是
。
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=|x﹣1|+|x+1|(x∈R)
(1)证明:函数f(x)是偶函数;
(2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图象,并写出函数的值域;
(3)在同一坐标系中画出直线y=x+2,观察图象写出不等式f(x)>x+2的解集.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量,分别记录抽查数据如下:
甲
102
101
99
98
103
98
99
乙
110
115
90
85
75
115
110
(1)这种抽样方法是哪一种?
(2)将两组数据用茎叶图表示.
(3)将两组数据进行比较,说明哪个车间产品较稳定. -
科目: 来源: 题型:
查看答案和解析>>【题目】某试验田分别种植了甲乙两种水稻,为了研究这两种水稻的产量,抽检了甲、乙两种水稻的谷穗各1000株.经统计,得到每株谷穗的粒数的频率分布直方图如图:

(Ⅰ)求乙种水稻谷穗的粒数落在[325,375)之间的频率,并将频率分布直方图补齐;
(Ⅱ)试根据频率分布直方图估计甲种水稻谷穗粒数的中位数与平均数(精确到0.1);
(Ⅲ)根据频率分布直方图,请至少从两方面对甲乙两种水稻谷穗的粒数作出评价. -
科目: 来源: 题型:
查看答案和解析>>【题目】函数f(x)=x2﹣mx(m>0)在区间[0,2]上的最小值记为g(m)
(1)若0<m≤4,求函数g(m)的解析式;
(2)定义在(﹣∞,0)∪(0,+∞)的函数h(x)为偶函数,且当x>0时,h(x)=g(x),若h(t)>h(4),求实数t的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
:
(
)的离心率为
,
、
分别是它的左、右焦点,且存在直线
,使
、
关于
的对称点恰好是圆
:
(
,
)的一条直径的两个端点.(Ⅰ)求椭圆
的方程;(Ⅱ)设直线
与抛物线
(
)相交于
、
两点,射线
、
与椭圆
分别相交于点
、
.试探究:是否存在数集
,当且仅当
时,总存在
,使点
在以线段
为直径的圆内?若存在,求出数集
;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】函数f(x)=
,(x∈(﹣∞,0]∪[2,+∞))的值域为( )
A.[0,4]
B.[0,2)∪(2,4]
C.(﹣∞,0]∪[4,+∞)
D.(﹣∞,2)∪(2,+∞)
相关试题