【题目】下列四个结论: ①若x>0,则x>sinx恒成立;
②“若am2<bm2 , 则a<b”的逆命题为真命题
③m∈R,使f(x)=(m﹣1)x
是幂函数,且在(﹣∞,0)上单调递减
④对于命题p:x∈R使得x2+x+1<0,则¬p:x∈R,均有x2+x+1>0
其中正确结论的个数是( )
A.1个
B.2个
C.3个
D.4个
参考答案:
【答案】B
【解析】解:对于①,设f(x)=x﹣sinx,其中x>0,
∴f′(x)=1﹣cosx≥0,
∴f(x)在(0,+∞)上是单调增函数;
∴f(x)>f(0)=0,
∴x﹣sinx>0,
∴x>sinx,
即x>0时,x>sinx恒成立,①正确;
对于②,“若am2<bm2,则a<b”的逆命题是:
“若a<b,则am2<bm2”,是假命题,
m=0时命题不成立,∴②错误;
对于③,令m﹣1=1,得m=2,此时f(x)=x﹣1是幂函数,
且在(﹣∞,0)上单调递减,∴③正确;
对于④,命题p:x∈R使得x2+x+1<0,
则¬p:x∈R,均有x2+x+1≥0,∴④错误.
综上,正确的结论是①③,共2个.
故选:B.
【考点精析】利用命题的真假判断与应用对题目进行判断即可得到答案,需要熟知两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则
( )
A. p1<p2<p3 B. p2<p1<p3 C. p1<p3<p2 D. p3<p1<p2
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:
甲商场:顾客转动如图所示的圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形的圆心角均为
,边界忽略不计)即为中奖.
乙商场:从装有2个白球、2个蓝球和2个红球(这些球除颜色外完全相同)的盒子中一次性摸出2球,若摸到的是2个相同颜色的球,则为中奖.
试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=2x(1﹣x),则f(﹣
)+f(1)=( )
A.﹣
B.﹣
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,我国PM2.5标准采用世界卫生组织设定的最宽限值,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米及其以上空气质量为超标.
某试点城市环保局从该市市区2016年全年每天的PM2.5监测数据中随机抽取6天的数据作为样本,监测值茎叶图(十位为茎,个位为叶)如图所示,若从这6天的数据中随机抽出2天,

(1)求恰有一天空气质量超标的概率;
(2)求至多有一天空气质量超标的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=lnx﹣0.5x+1,则不等式f(2x﹣3)<0.5的解集为( )
A.{x|﹣1<x<1.5}
B.{x|0.5<x<2}
C.{x|x<2}
D.{x|1.5<x<2} -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
下列四个命题: ①f(f(1))>f(3);
②x0∈(1,+∞),
;
③f(x)的极大值点为x=1;
④x1 , x2∈(0,+∞),|f(x1)﹣f(x2)|≤1
其中正确的有 . (写出所有正确命题的序号)
相关试题